29 resultados para Damage Identification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense tha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate the mechanism of acoustic emission (AE) in the rock fracture experiment, moment tensor analysis was carried out. The AE sources characterized by crack sizes, orientations and fracture modes, are represented by a time-dependent momen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the rigid particle filled polymer is studied in the hope to understand the real damage mechanisms. Two damage parameters were introduced and measured. One is the macro-damage of the materials calculated from the modulus measured, another is micro-damage describing the interfacial debonding or the percentage of the particle debonded from the matrix. The damage rate of the macro damage decreases, while the micro damage increases with the applied stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage evolution of heterogeneous brittle media involves a wide range of length scales. The coupling between these length scales underlies the mechanism of damage evolution and rupture. However, few of previous numerical algorithms consider the effects of the trans-scale coupling effectively. In this paper, an adaptive mesh refinement FEM algorithm is developed to simulate this trans-scale coupling. The adaptive serendipity element is implemented in this algorithm, and several special discontinuous base functions are created to avoid the incompatible displacement between the elements. Both the benchmark and a typical numerical example under quasi-static loading are given to justify the effectiveness of this model. The numerical results reproduce a series of characteristics of damage and rupture in heterogeneous brittle media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the crack identification problems are investigated. This kind of problems belong to the scope of inverse problems and are usually ill-posed on their solutions. The paper includes two parts: (1) Based on the dynamic BIEM and the optimization method and using the measured dynamic information on outer boundary, the identification of crack in a finite domain is investigated and a method for choosing the high sensitive frequency region is proposed successfully to improve the precision. (2) Based on 3-D static BIEM and hypersingular integral equation theory, the penny crack identification in a finite body is reduced to an optimization problem. The investigation gives us some initial understanding on the 3-D inverse problems.