91 resultados para DISTRIBUTED STRAIN
Resumo:
Applying the scaling relationships developed recently for conical indentation in elastic-plastic solids with work-hardening, we examine the question of whether stress-strain relationships of such solids can be uniquely determined by matching the calculated loading and unloading curves with that measured experimentally. We show that there can be multiple stress-strain curves for a given set of loading and unloading curves. Consequently, stress-strain relationships may not be uniquely determined from loading and unloading curves alone using a conical or pyramidal indenter.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2-5-mm-diameter rods under various cooling rates (200-2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2-7 nm size clustered "glassy-martensite" matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1-15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale "glassy-martensite" features are beneficial for improving the inherent ductility of the metallic glass.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.
Resumo:
Dislocation models with considering the mismatch of elastic modulus between matrix and reinforcing particles are used to determine the effective strain gradient \ita for particle reinforced metal matrix composites (MMCp) in the present research. Based on Taylor relation and the kinetics of dislocation multiplication, glide and annihilation, a strain gradient dependent constitutive equation is developed. By using this strain gradient-dependent constitutive equation, size-dependent deformation strengthening behavior is characterized. The results demonstrate that the smaller the particle size, the more excellent in the reinforcing effect. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.
Resumo:
介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...
Resumo:
We suggest a local pinning feedback control for stabilizing periodic pattern in spatially extended systems. Analytical and numerical investigations of this method for a system described by the one-dimensional complex Ginzburg-Landau equation are carried out. We found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in the presence of a large gradient force. Our analytical predictions well coincide with numerical observations.
Resumo:
The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.
Resumo:
A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.