112 resultados para DISORDERED MEDIUM
Resumo:
We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America
Resumo:
We investigate the influence of ionization on the propagation and spectral effects of a few-cycle ultrashort laser pulse in a two-level medium. It is found that when the fractional ionization is weak, the production of higher spectral components makes no difference. However, when the two states are essentially depleted before the peak of the laser pulse, the impact of ionization on the higher spectral components is very significant.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.
Resumo:
Using a omega-3 omega combination scenario, we investigate the absolute phase control of the spectra effects for ultrashort laser pulses propagating in a two-level medium. It is found that the higher spectral components can be controlled by the absolute phases. In particular, different absolute phase combinations can lead to the buildup or split of the even harmonics. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The propagation of an arbitrary polarized few-cycle ultrashort laser pulse in a degenerate three-level medium is investigated by using an iterative predictor-corrector finite-difference time-domain method. It is found that the polarization evolution of the ultrashort laser pulse is dependent not only on the initial atomic coherence of the medium but also on the polarization condition of the incident laser pulse. When the initial effective area is equal to 2 pi, complete linear-to-circular and circular-to-linear polarization conversion of few-cycle ultrashort laser pulses can be achieved due to the quantum interference effects between the two different transition paths.
Resumo:
We theoretically investigate carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium. Our results show that a soliton pulse can be generated during the two-photon resonant propagation of few-cycle pulse in the polar molecule medium. Moreover, the main features of the soliton pulse, such as pulse duration and intensity, depend crucially on the carrier-envelope phase of the incident pulse, which could be utilized to determine the carrier-envelope phase of a few-cycle ultrashort laser pulse from a mode-locked oscillator.
Resumo:
We study the possibility of manipulating the focusing properties of a medium with electromagnetically induced transparency. In the focal region of focused ultraslow light pulses, the spectral anomalous behaviors can be actively modified by varying the control field intensity. Unlike the case in free space, we find in slow light focusing that the spectrum bandwidth of the incident field needed to produce observable spectral changes can be reduced by several orders. Numerical simulations with accessible parameters clearly show that spectral anomalies of focused mu s pulses are observable.
Resumo:
Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.
Resumo:
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution. (c) 2007 Elsevier B.V. All rights reserved.