112 resultados para DIMENSIONAL MODEL
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.
Resumo:
The steady and axisymmetric crystal growth process of floating zone model was studied numerically to concern with the influence of convection and phase change on effective segregation. An iteration method of numerical simulation considering both thermocapillary and buoyancy effects for GaAs crystal growth gave the effective segregation coefficient, which was compared with the space experiment of GaAs on board the Chinese recoverable satellite. The calculated segregation coefficient of a two-dimensional model was found to be smaller than the one suggested by space experiment with the simplified assumption of an one-dimensional model.
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.
Resumo:
A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.
Resumo:
ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas- ing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi- crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coor- dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair po- tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface re- spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one- dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
Classical swine fever virus (CSFV) non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp), a key enzyme which initiates RNA replication by a de novo mechanism without a primer and is a potential target for anti-virus therapy. We expressed the NS5B protein in Escherichia coli. The rGTP can stimulate de novo initiation of RNA synthesis and mutation of the GDD motif to Gly-Asp-Asp (GAA) abolishes the RNA synthesis. To better understand the mechanism of viral RNA synthesis in CSFV, a three-dimensional model was built by homology modeling based on the alignment with several virus RdRps. The model contains 605 residues folded in the characteristic fingers, palm and thumb domains. The fingers domain contains an N-terminal region that plays an important role in conformational change. We propose that the experimentally observed promotion of polymerase efficiency by rGTP is probably due to the conformational changes of the polymerase caused by binding the rGTP. Mutation of the GDD to GAA interferes with the interaction between the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
信息技术的不断进步使得软件产品的应用领域不断扩大,同时软件产品的规模也在迅速膨胀。软件产品的开发模式已由最初的手工作坊式开发逐渐转变为大规模的工程化软件开发。这使得资源调度问题逐渐成为软件项目管理的核心研究内容之一。 软件项目与传统工业项目相比具有如下两个显著特点:其一是软件项目对人力资源能力的依赖性非常高;其二是软件项目在开发过程中具有的不确定性因素较多,也就是风险较高。这两个特点决定了传统工业调度方法不能很好地适用于软件项目管理,同时也为软件项目资源优化调度问题研究提出了新的挑战。需要根据软件项目的特点研究适合的资源调度方法为软件项目管理工作提供支持。 本文的研究工作旨在通过对软件项目的结构进行分析和描述,在建立软件项目核心要素模型的基础上,考虑软件项目高人力资源能力依赖性和高风险性两大特征,由人力资源能力和风险作为驱动因素,对软件项目中人力资源和项目缓冲两大核心资源进行优化分配和调度,以提高软件项目的资源利用效率和软件项目执行的稳定性。本文的主要贡献有: (1)建立了软件项目资源优化调度研究框架QMMT和项目核心要素模型PTHR。 QMMT研究框架由问题驱动(Question Driven),模型描述(Model Description),方法研究(Method Research)和工具验证(Tool Validation)四个模块构成。四个模块之间既存在顺序关系也存在信息反馈机制,框架具有良好的适应性和可扩展性。实践表明,QMMT研究框架对研究软件项目资源优化调度问题具有良好的指导作用。本文中涉及软件项目资源优化调度的多个研究问题均遵循QMMT研究框架。 通过对软件项目所包含的各个要素及要素之间的关系进行定义和描述,我们建立了软件项目核心要素模型PTHR。模型对软件项目的四个要素:项目(Project)、任务(Task)、人力资源(Human Resource)、风险(Risk)以及四个要素之间的关系进行了形式化定义和描述。PTHR模型涵盖了软件项目的核心要素并具有良好的可扩展性,可以为资源优化调度中具体问题的分析、算法的设计、流程的安排以及工具开发提供底层支持。PTHR模型是本文后续方法中相关系列子模型的基础模型。 (2) 提出了软件项目中任务-人员匹配的三维匹配模型3D-THM和基于3D-THM模型的任务人员优化分配方法。 任务人员匹配是人力资源调度的基础。3D-THM(3 Dimensional model for Task Human Matching)模型通过对人力资源的技术能力、性格能力和职业规划进行描述,以及对任务的技术能力需求、性格能力需求和职业规划需求进行描述,设定相应的多因素匹配算法,为任务-人员的全面优化匹配提供支持。实验表明,3D-THM模型较好的描绘了软件项目中任务-人员优化匹配问题,能够体现软件项目的高人力资源能力依赖性。模型实例化后所得到的匹配方法和相应的原型工具可为软件项目资源优化调度以及软件过程建模提供人员优化匹配支持,能够提高项目管理人员的工作效率,提升项目人员对任务分配的满意度。 (3) 提出了基于人员可用性的人力资源调度方法。 在对任务人员进行优化匹配的基础上,通过综合考虑人力资源能力和工作时间实现了基于人员可用性的人力资源调度方法。方法结合软件项目的结构特征,建立了任务人员可用性约束模型THACM(Task Human resources Availability Constraints Model)。基于THACM模型实现了在给定资源集合、任务集合下的人力资源自动分配和项目进度的自动安排。方法可有效解决采用矩阵组织结构的企业所面临的低资源可见性问题,协助其提高人力资源的利用效率。 (4)提出了基于任务优先级的抢占式人力资源调度方法PP-HAS。 在对人力资源可用性进行考虑的基础上,为了解决多项目环境下常见的资源冲突问题,我们提出了基于任务优先级的抢占式人力资源调度方法PP-HAS(Task Priority Based Preemptive Human Resource Scheduling Method)。方法首先建立了综合考虑进度、成本、质量三方面因素的基于价值的任务优先级模型VBTPM(Value Based Task Priority Model),将该任务优先级模型与过程Agent技术结合,通过设计支持抢占的人力资源调度流程,实现了多过程Agent协商下的人力资源优化调度。方法通过抢占和再计划实现了人力资源的动态高效利用,能够为资源冲突的解决以及项目的再计划工作提供决策支持。 (5)提出了风险驱动的软件项目缓冲资源分配方法。 项目缓冲的合理分配是降低风险对项目进度造成影响的重要手段。我们在软件项目资源调度方法中加入对风险因素的考量,基于软件项目中风险的特征,建立了简化的风险模型RRM(Reduced Risk Model)。基于RRM模型提出了风险驱动的项目缓冲分配方法,旨在软件项目的执行效率和稳定性二者之间进行权衡。模拟实验的结果表明,相对于传统关键链项目管理理论中尾部集中的项目缓冲分配方法,风险驱动的项目缓冲分配方法能够在确保对项目平均执行工期产生较小影响的同时,显著降低项目执行时计划变更的发生频率。该缓冲分配方法与项目模拟工具可以帮助项目经理确定合适的项目缓冲时间长度以及缓冲分配方案,进而提高软件项目计划的可信性和执行的稳定性。
Resumo:
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
Resumo:
The stability and derailment behavior analysis of railway vehicle system has been discussed by many papers in the past. In stability, give first place to consider hunting behavior of vehicle, therefore most of papers was only consider lateral and yaw motion, but vertical motion is the important factor in derailment behavior, and it will be quite effect in stability. We will probe the running stability and derailment behavior of railway vehicle moving on the viaduct in this paper. In this paper, we use Nadal’s formula to get the derailment quotient. In this paper, the railway vehicle is considered to be three subsystems, carbody, bogie and wheelset. There are secondary suspension systems between carbody and bogies, and primary suspension systems connecting bogies and wheelsets. A vehicle with vertical, lateral, roll, and yaw directions motion is considered to derive the mathematical equations. A vehicle with three-dimensional model has 16 degrees of freedom is used to develop the equations of train motion. In this study, results show that the track shift force and derailment factor increase with an increase of ground acceleration. But for the track shift force and derailment factor, the effects of track irregularities and train speed are very small. Key words: earthquake, railway vehicle, viaduct, derailment factor.
Resumo:
The study of regional crustal stability of active tectonic region basically includes analysis of recent activity of Earth's crust, single factor assessment, study of complexity, and comprehensive assessment of crust stability. In this thesis, some work are made as follows: · Based on abundant data from gravity field, aeromagnetic survey, magnetism, magnetotelluric deep sounding, remote sensing and geotectonic as well as earthquakes observed in recent years around this region and adjacent zones, we can get a through understanding about the structural features and activity of the earth's crust in Chuan-Dian region. The results from explosion earthquake and telluric electromagnetic sounding are consistent with the structural features of the crust manifested by the geophysical field. The data of deep geologic structures are important for us to work out a vivid three-dimensional model of the earth's crustal structure of the Jinsha River region. According to a synthesis, the author of this thesis proposes some indicators for dividing the faulted blocks. It can also be inferred that the movement of the Chuan-Dian faulted block, which is the relatively active part of southwestern China, is controlled by the boundary faults, and the intensive activity and deformation are concentrated along the boundaries of the block. · Mainly discussing respectively the mechanism and laws of active faults, earthquakes, and geological hazards activity, and their influences on the stability and security of engineering, also trying to probe into the way to assess the risk of single factor in this section. Especially with the method of fractal geometry, the thesis has discussed how to study the complexity of each factor. These geologic hazards which are distributed at the uppermost part of the crust in this region form a typical mountainous set of the active tectonic areas. The results of survey show that some slopes are liable- to -sliding with a weak layer of low shear strength. Occurrences of landslides are to a great extent related to local geological structures, in particular active faults. This is why numerous landslides have occurred simultaneously around the epicenter of a strong earthquake or the center of a strong rainfall, which are related to active faults. · The analysis of the crustal stability is based on a regional grid division, and a fuzzy comprehensive analysis method is used to determine the grade of the quality in each grid. The evaluation factors and their weights are taken from the results of the hierarchical analysis. The evaluation indexes consist of qualitative and quantitative ones. The qualitative ones can be quantified through the experts weighing system, while the quantitative ones can be obtained from statistical analysis. For quality grades, four levels are used: stable, essentially stable, sub-stable, and unstable. The results of the evaluation on Jinshajiang region demonstrate that the crustal stability become distinctly worse in the areas controlled by active deep faults. Therefore, detailed investigations on the active faulting and geologic hazards, include earthquake activity are especially necessary for those areas adjacent to the deep fault belts. On the bases of the data available and the survey results, we have made a preliminary assessment for the construction conditions and adaptability of every planned site in the middle or lower reaches of Jinsha River. Finally, the thesis prospected the vista of the study of crustal stability.
Resumo:
Cut-and-filling stoping becomes more and more important in mining industry for the advantage in protecting environment and its adaptability. However, there is less research in the movement of rock mass and the ground displacement caused by the mining method. In this paper, based on relevant geological and geotechnical test data, the strata movement and the ground displacement of Jinchuan nickel mine are studied comprehensively. The main achievement in this paper can be drawn as follows. Geologic conditions of mining area No.2 of Jinchuan Nickel mine are summed up and influential factors of the movement of rock mass and the surface displacement are analyzed. For recognized the shape of orebody No.l, three-dimensional model is established with 3D Studio MAX software. Based on reconnaissance trip, the monitoring data of GPS and ground fissures in mining area No.2 of Jinchuan Nickel mine are discussed. Then, the rule of the surface displacement and the reason of ground fissures generation are preliminary analyzed. The characteristic of ground movement, surrounding stress and strain in the process of excavation and backfilled is research and analyzed with the method of numerical simulation. The rule of the movement of rock mass and the surface displacement in mining area No.2 of Jinchuan Nickel mine is summed up. The influence of the movement of rock mass and the surface displacement by the dip angle of orebody No.l in mining area No.2 is examined and then the strata movement and the ground displacement is predicted.
Resumo:
With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.