40 resultados para Coupled Elliptic System
Resumo:
We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]
Resumo:
For an electron spin in coupling with an interacting spin chain via hyperfine-type interaction, we investigate the dynamical evolutions of the pairwise entanglement of the spin chain, and a correlation function joined the electron spin with a pair of chain spins in correspondence to the electron-spin coherence evolution. Both quantities manifest a periodic and a decaying evolution. The entanglement of the spin bath is significant in distinguishing the zero-coherence status exhibited in periodic and decoherence evolutions of the electron spin. The periodical concurrence evolution of the spin bath characterizes the whole system in a coherence-preserving phase, particularly for the case that the associated periodic coherence evolution is predominated by zero value in the infinite chain-length limit, which was often regarded as the realization of decoherence.
Resumo:
The thermal entanglement in a two-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement is present and evolvements symmetrically between both ferromagnetic and antiferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly.
Resumo:
The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature; different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.
Resumo:
In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.
Resumo:
The dielectric response of an electron system composed of an array of parallel quantum wires with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations (SPE) as functions of wave-vectors are given. It is found that for the nearly isolated quantum wires with several subbands occupation, there are a series of intra-subband collective excitations between corresponding intra-subband SPE spectra. There also exist inter-subband collective excitations when q(x) not equal 0 (q(x) is the wave-vector component in the modulation direction), whose energies are close by the corresponding inter-subband SPE spectra. The energy of the intra-subband mode decreases and that of inter-subband mode increases with q(x) increasing. The collective excitation dispersions show obvious anisotropy in the 1D quantum limit. The calculated results agree with the experiment well. The coupling between quantum wires affects markedly both the collective and single-particle excitations spectra. The system changes to a near-two-dimensional electron system gradually with increasing coupling.
Resumo:
The dielectric response of a modulated three-dimensional electron system composed of a periodic array of quantum wells with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations as functions of wave vectors are given. It is found that for the nearly isolated multiple-quantum-well case with several subbands occupation, there is a three-dimensional-like plasmon when q(z)=0 (q(z) is the wave-vector component in the superlattice axis). There also exist intersubband collective excitations in addition to one intra-subband mode when q(z) not equal 0. The intra-subband mode has a linear dispersion relation with q(//) (the wave-vector component perpendicular to the superlattice axis) when q(//) is small. The inter-subband modes cover wider ranges in q(//) with increasing values of q(z). The energies of inter-subband collective excitations are close by the corresponding inter-subband single-particle excitation spectra. The collective excitation dispersions show obvious anisotropy in the 2D quantum limit. The calculated results agree with the experiment. The coupling between quantum wells affects markedly both the collective excitations and the single particle excitations spectra. The system shows gradually a near-three-dimensional electron gas character with increasing coupling. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient D', is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
Pressurized capillary electrochromatography (pCEC) was coupled with electrospray ionization mass spectrometry (ESI-MS) using a coaxial sheath liquid interface. It was used for separation and analysis of peptides and proteins. The effects of organic modifier and applied voltage on separation were investigated, and the effects of pH value of the mobile phase and the concentration of the electrolyte on ESI-MS signal were investigated. The resolution and detection sensitivity with different separation methods (pCEC, capillary high-performance liquid chromatography) coupled on-line with mass spectrometry were compared for the separation of a peptide mixture. To evaluate the feasibility and reliability of the experimental setup of the system, tryptic digests of cytochrome c and modified protein as real samples were analyzed by using pCEC-ESI-MS.
Resumo:
A comprehensive two-dimensional liquid chromatographic separation system based on the combination of a CN column and an ODS column is developed for the separation of components in a traditional Chinese medicine (TCM) Rhizoma chuanxiong. Two columns are coupled by a two-position, eight-port valve equipped with two storage loops and controlled by a computer. The effluent is detected by both the diode array detector and atmospheric pressure chemical ionization (APCI) mass spectrometer. More than 52 components in the methanol extract of R. chuanxiong were resolved and 11 of them were preliminary identified according to their UV and mass spectra. (C) 2004 Elsevier B.V. All rights reserved.