27 resultados para Corrosion Resistance
Resumo:
A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.
Resumo:
A novel multicomponent thick metallic glass coating has been synthesised by laser cladding. The maximum coating thickness was I mm. The clad cooling rate restrained the epitaxial growth of dendrites in the metallic glass coating. The metallic glass had high glass forming ability with a wide supercooled liquid region ranging from 59 to 70 K. The metallic glass coating also revealed high hardness and good corrosion resistance.
Resumo:
Various Plasma Electrolytic Oxidation (PEO) ceramic coatings were prepared on LY12 aluminum alloy by adjusting the concentration of sodium silicate solution. Optical microscope (OM), XRD and EIS were used to study their morphology, composition and anti corrosion behavior in NaCl solution. Increasing concentration of sodium silicate leads to the increase of the total coating thickness while too high and too low concentration lead to the decrease of inner dense layer. The main composition of PEO coatings prepared in 20, 40 and above 60g/L concentration solution are correspondingly alumina, alumina with mullite, and amorphous phase. The corrosion resistance is determined by the inner dense layer. Increasing the thickness of inner dense layer can improve the anti-corrosion performance. PEO coating's corrosion resistance in acidic, alkaline and neutral NaCl solution is proved and the corrosion mechanism involved is also discussed.
Resumo:
This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
为了研究塑性变形对热镀锌板耐蚀性的影响,用称量法测试了不同塑性变形状态下的热镀锌板在5%NaCl溶液全浸腐蚀试验中的腐蚀速率,发现全浸蚀腐蚀试验7周后,原始镀锌板质量下降0.09%,拉伸应变为10%的镀锌板质量下降0.22%,腐蚀程度是前者的2.4倍.结果表明,塑性变形会降低热镀锌板的耐蚀性,而耐蚀性的降低是由塑性变形引起的裂纹密度的增加所致.
Resumo:
Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 10(9) Omega cm(2) until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.
Resumo:
铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。
Resumo:
With increasing applied voltage, three types of anodic coatings, passive film, micro-spark ceramic coating and spark ceramic coating were made by micro-arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali-silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro-spark ceramic coating, prepared in the voltage range of 170similar to220V exhibits compact, homogeneous structure and highest corrosion-resistance.
Resumo:
25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.
Resumo:
Langmuir-Blodgett (LB) monolayers of hexadecyl trimethyl ammonium bromide (HTAB) were deposited onto a carbon steel surface to investigate the inhibition of corrosion by measurement of the polarization resistance and cyclic voltammetry. The corrosion proc
Resumo:
In order to investigate the corrosion of pipeline materials in Seabed Sediment (SBS) environment, weight-loss and electrochemical measurements in saturated sand and mud cells with seawater were performed for a simulation. The used electrochemical measurements included linear polarization resistance (LPR) and potentiodynamic scanning measurement. It was showed that the corrosion rate of mild steel in the present condition was lower than the corrosion rate of other marine environment corrosion zones of it; that the granularity of SBS could affect the corrosion behavior greatly; that with increasing grain size of SBS, the corrosion rate increased. Integrated over the results of the weight loss and polarization curves, the oxygen diffusion (oxygen as a depolarizant agent) mechanism was proposed and discussed.
Resumo:
Electrochemical measurement, quantum chemical method, and scanning electron microscopy (SEM) were performed to investigate the inhibitive effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine(TPT) on the corrosion of mild steel in 1mol.L-1 HCl at room temperature. Impedance spectroscopy measurement showed that the polarization resistance increased and that double layer capacitance decreased with the increase in the inhibitive concentration, and the results of potentiodynamic polarization showed that the inhibitors suppressed both cathodic and anodic processes of steel corrosion without change in the mechanism. Higher the orbital density distribution strength of the lowest unoccupied molecular orbital, higher is the molecule dipole, and lower energy gap between the energy of the highest occupied molecular orbital and the energy of the lowest unoccupied molecular orbital resulted in higher inhibitory efficiency. The results of SEM analysis showed that the metal was protected from aggressive corrosion by the addition of TTC and TPT.