29 resultados para Convolutional codes over finite rings


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the particle cover over the density interface between two layers of fluids and of the suspended solid particles in the upper turbulcnt layer on the turbulent entrainment has been studied experimentally. The entrainment distance D is a function of the time of power: D=kt, where =0.200-0.130p. For suspended particles in the upper layer and pure 2-layer fluid is equal to 0.200, but the value of k for the suspended particles is smaller than that for the pure 2-layer fluid. The non-dimensional entrainment velocity is E=KRiln, where n=1.50+0.93 p. It is shown that the particle cover over the interface changes the power of Ril in the entrainment and hinders the turbulent entrainment. The variation rule of E for the suspended particles is the same as that for the pure 2-layer fluid, but the K value of the former is smaller than that of the latter. The turbulent mixing mechanism has been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate theoretically electron spin states in one-dimensional and two-dimensional (2D) hard-wall mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) in a perpendicular magnetic field. The Hamiltonian of the RSOI alone is mathematically equivalent to that of the DSOI alone using an SU(2) spin rotation transformation. Our theoretical results show that the interplay between the RSOI and DSOI results in an effective periodic potential, which consequently leads to gaps in the energy spectrum. This periodic potential also weakens and smoothens the oscillations of the persistent charge current and spin current and results in the localization of electrons. For a 2D ring with a finite width, higher radial modes destroy the periodic oscillations of persistent currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy spectrum and the persistent currents are calculated for a finite-width mesoscopic annulus with radial potential barrier, threading a magnetic flux through the hole of the ring. Owing to the presence of tunneling barrier, the coupling effect leads to the splitting of each radial energy subband of individual concentrical rings into two one. Thus, total currents and currents carried by single high-lying eigenstate as a function of magnetic flux exhibit complicated patterns. However, periodicity and antisymmetry of current curves in the flux still preserve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A buoy as an offshore structure is often placed over a convex such as a caisson or a submerged island. The hydrodynamic fluid/solid interaction becomes more complex due to the convex compared with that on the flat. Both the buoy and the convex are idealized as vertical cylinders. Linear potential theory is used to investigate the response amplitude and the hydrodynamic force for a buoy over a convex due to diffraction and radiation in water of finite depth. These are derived from the total velocity potential. A set of theoretical added mass, damping coefficient, and exciting force expressions have been proposed. Analytical results of the response amplitude and hydrodynamic force are given. Finally, the numerical results show that the effect of the convex on the response amplitude and hydrodynamic force for the buoy is ignored if the size of the convex is relatively smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy spectrum and the persistent currents are calculated for finite-width mesoscopic annular structures with radial potential barrier in the presence of a magnetic field. The introduction of the tunneling barrier leads to the creation of extra edge states around the barrier and the occurrence of oscillatory structures superimposed on the bulk Landau level plateaus in the energy spectrum. We found that the Fermi energy E-F increases with the number of electrons N emerging many kinks. The single eigenstate persistent current exhibits complicated structures with vortex-like texture, ''bifurcation'', and multiple ''furcation'' patterns as N is increased. The total currents versus N display wild fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general numerical algorithm in the context of finite element scheme is developed to solve Richards’ equation, in which a mass-conservative, modified head based scheme (MHB) is proposed to approximate the governing equation, and mass-lumping techniques are used to keep the numerical simulation stable. The MHB scheme is compared with the modified Picard iteration scheme (MPI) in a ponding infiltration example. Although the MHB scheme is a little inferior to the MPI scheme in respect of mass balance, it is superior in convergence character and simplicity. Fully implicit, explicit and geometric average conductivity methods are performed and compared, the first one is superior in simulation accuracy and can use large time-step size, but the others are superior in iteration efficiency. The algorithm works well over a wide variety of problems, such as infiltration fronts, steady-state and transient water tables, and transient seepage faces, as demonstrated by its performance against published experimental data. The algorithm is presented in sufficient detail to facilitate its implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany. The quench of the strand is simulated using FEM software ANSYS. From the simulation, the quench propagation can be visualized. Programming with APDL, the value of propagation velocity of normal zone is calculated. Also the voltage increasing over time of the strand is computed and pictured. Furthermore, the Minimum Propagation Zone (MPZ) is studied. At last, the relation between the current and the propagation velocity of normal zone, and the influence of initial temperature on quench propagation are studied.