18 resultados para Conservation of biodiversity
Resumo:
The Central Yangtze ecoregion in China includes a number of lakes, but these have been greatly affected by human activities over the past several decades, resulting in severe loss of biodiversity. In this paper, we document the present distribution of the major lakes and the changes in size that have taken place over the past 50 years, using remote sensing data and historical observations of land cover in the region. We also provide an overview of the changes in species richness, community composition, population size and age structure, and individual body size of aquatic plants, fishes, and waterfowl in these lakes. The overall species richness of aquatic plants found in eight major lakes has decreased substantially during the study period. Community composition has also been greatly altered, as have population size and age and individual body size in some species. These changes are largely attributed to the integrated effects of lake degradation, the construction of large hydroelectric dams, the establishment of nature reserves, and lake restoration practices.
Resumo:
Ancherythroculter nigrocauda is a cyprinid fish endemic to the upper reaches of the Yangtze River, which has been reported to have 2 or 3 chambers to its air bladder. Morphological studies showed no differences between individuals with different types of air bladder, but did demonstrate geographical differences from different sources. After the completion of the Three Gorges Dam, it was expected that the population of this species would decrease, but artificial breeding and stocking is under consideration to protect this species from extinction. In the present study, mtDNA cytochrome b gene sequences were determined and analyzed for A. nigrocauda samples of different morphotypes and sources to identify their genetic differentiations, and thereby guide plans for the artificial propagation and conservation of this species. Haplotype diversity index values (h) and nucleotide diversity values (pi) for all the populations were found to be high indicating their high level genetic diversity. An analysis of molecular variance identified no differentiation among the studied populations. Therefore, we suggested that the individuals of different morphological types and geographical sources belong to the same species. To maintain its high level genetic diversity, it mill he necessary to use large and diverse sources of parental fish for artificial reproduction.
Resumo:
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011 +/- 0.0002 and haplotypic diversity 0.65 +/- 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by F-st and Phi(st) yielded statistically significant population genetic structure (F-st = 0.44, P < 0.05; phi(st) = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.