28 resultados para Conjugate gradient methods
Resumo:
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
Resumo:
To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.
Resumo:
Impedance inversion is very important in seismic technology. It is based on seismic profile. Good inversion result is derived from high quality seismic profile, which is formed using high resolution imaging resolution. High-resolution process demands that signal/noise ratio is high. It is very important for seismic inversion to improve signal/noise ratio. the main idea is that the physical parameter (wave impedance), which describes the stratigraphy directly, is achieved from seismic data expressing structural style indirectly. The solution of impedance inversion technology, which is based on convolution model, is arbitrary. It is a good way to apply the priori information as the restricted condition in inversion. An updated impedance inversion technology is presented which overcome the flaw of traditional model and highlight the influence of structure. Considering impedance inversion restricted by sedimentary model, layer filling style and congruence relation, the impedance model is built. So the impedance inversion restricted by geological rule could be realized. there are some innovations in this dissertation: 1. The best migration aperture is achieved from the included angle of time surface of diffracted wave and reflected wave. Restricted by structural model, the dip of time surface of reflected wave and diffracted wave is given. 2. The conventional method of FXY forcasting noise is updated, and the signal/noise ratio is improved. 3. Considering the characteristic of probability distribution of seismic data and geological events fully, an object function is constructed using the theory of Bayes estimation as the criterion. The mathematics is used here to describe the content of practice theory. 4. Considering the influence of structure, the seismic profile is interpreted to build the model of structure. A series of structure model is built. So as the impedance model. The high frequency of inversion is controlled by the geological rule. 5. Conjugate gradient method is selected to improve resolving process for it fit the demands of geophysics, and the efficiency of algorithm is enhanced. As the geological information is used fully, the result of impedance inversion is reasonable and complex reservoir could be forecasted further perfectly.
Resumo:
As the largest and highest plateau on the Earth, the Tibetan Plateau has been a key location for understanding the processes of mountain building and plateau formation during India-Asia continent-continent collision. As the front-end of the collision, the geological structure of eastern Tibetan Plateau is very complex. It is ideal as a natural laboratory for investigating the formation and evolution of the Tibetan Plateau. Institute of Geophysics, Chinese Academy of Sciences (CAS) carried out MT survey from XiaZayii to Qingshuihe in the east part of the plateau in 1998. After error analysis and distortion analysis, the Non-linear Conjugate Gradient inversion(NLCG), Rapid Relaxation Inversin (RRI) and 2D OCCAM Inversion algorithms were used to invert the data. The three models obtained from 3 algorithms provided similar electrical structure and the NLCG model fit the observed data better than the other two models. According to the analysis of skin depth, the exploration depth of MT in Tibet is much more shallow than in stable continent. For example, the Schmucker depth at period 100s is less than 50km in Tibet, but more than 100km in Canadian Shield. There is a high conductivity layer at the depth of several kilometers beneath middle Qiangtang terrane, and almost 30 kilometers beneath northern Qiangtang terrane. The sensitivity analysis of the data predicates that the depth and resistivity of the crustal high conductivity layer are reliable. The MT results provide a high conductivity layer at 20~40km depth, where the seismic data show a low velocity zone. The experiments show that the rock will dehydrate and partially melt in the relative temperature and pressure. Fluids originated from dehydration and partial melting will seriously change rheological characteristics of rock. Therefore, This layer with low velocity and high conductivity layer in the crust is a weak layer. There is a low velocity path at the depth of 90-110 km beneath southeastern Tibetan Plateau and adjacent areas from seismology results. The analysis on the temperature and rheological property of the lithosphere show that the low velocity path is also weak. GPS measurements and the numerical simulation of the crust-mantle deformation show that the movement rate is different for different terranes. The regional strike derived from decomposition analysis for different frequency band and seismic anisotropy indicate that the crust and upper mantle move separately instead of as a whole. There are material flow in the eastern and southeastern Tibetan Plateau. Therefore, the faults, the crustal and upper mantle weak layers are three different boundaries for relatively movement. Those results support the "two layer wedge plates" geodynamic model on Tibetan formation and evolution.
Resumo:
The content of this paper is based on the research work while the author took part in the key project of NSFC and the key project of Knowledge Innovation of CAS. The whole paper is expanded by introduction of the inevitable boundary problem during seismic migration and inversion. Boundary problem is a popular issue in seismic data processing. At the presence of artificial boundary, reflected wave which does not exist in reality comes to presence when the incident seismic wave arrives at the artificial boundary. That will interfere the propagation of seismic wave and cause alias information on the processed profile. Furthermore, the quality of the whole seismic profile will decrease and the subsequent work will fail.This paper has also made a review on the development of seismic migration, expatiated temporary seismic migration status and predicted the possible break through. Aiming at the absorbing boundary problem in migration, we have deduced the wide angle absorbing boundary condition and made a compare with the boundary effect of Toepiitz matrix fast approximate computation.During the process of fast approximate inversion computation of Toepiitz system, we have introduced the pre-conditioned conjugate gradient method employing co circulant extension to construct pre-conditioned matrix. Especially, employment of combined preconditioner will reduce the boundary effect during computation.Comparing the boundary problem in seismic migration with that in Toepiitz matrix inversion we find that the change of boundary condition will lead to the change of coefficient matrix eigenvalues and the change of coefficient matrix eigenvalues will cause boundary effect. In this paper, the author has made an qualitative analysis of the relationship between the coefficient matrix eigenvalues and the boundary effect. Quantitative analysis is worthy of further research.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Spectroscopic properties of Ce-doped yttrium orthoaluminate (Ce:YAlO3 or Ce:YAP) crystals grown by temperature gradient technique (TGT) were investigated, and the effects of the growth conditions on the properties were analyzed.. Methods of optical absorption (OA), photoluminescence (PL), photoluminescence decay (PLD), X-ray excited luminescence (XL) and cathodeluminescence (CL) were used in these investigations. The results showed that the absorption band peak at 202, 394 and 532 nm originated from F and F+ color center induced by the weak reducing growth atmosphere, green emission band near 500 ran derived from Ce3+ -Ce3+ pairs and band at 650 similar to 850 run from some unintentional impurity in crystals.
Resumo:
A sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantitative determination of microcystin-LR (MC-LR) and its glutathione conjugate (MC-LR-GSH) in fish tissues. The analytes were extracted from fish liver and kidney using 0.01 M EDTA-Na-2-5% acetic acid, followed by a solid-phase extraction (SPE) on Oasis HLB and silica cartridges. High-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MC-LR and its glutathione conjugate in fish liver and kidney. Recoveries of analytes were assessed at three concentrations (0.2, 1.0, and 5 mu g g(-1) dry weight [DW]) and ranged from 91 to 103% for MC-LR, and from 65.0 to 75.7% for MC-LR-GSH. The assay was linear within the range from 0.02 to 5.0 mu g g(-1) DW, with a limit of quantification (LOQ) of 0.02 mu g g(-1) DW. The limit of detection (LOD) of the method was 0.007 mu g g(-1) DW in both fish liver and kidney. The overall precision was determined on three different days. The values for within- and between-day precision in liver and kidney were within 15%. This method was applied to the identification and quantification of MC-LR and its glutathione conjugate in liver and kidney of fish with acute exposure of MC-LR. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
C-60 Single crystals grown by a single-temperature-gradient technique were characterized by synchrotron radiation white beam x-ray topography and x-ray double crystal diffraction with Cu K-alpha 1 radiation on conventional x-ray source. The results show that the crystal is rather well crystallized, The x-ray topographies give an evidence of dendritic growth mechanism of C-60 Single crystal, and x-ray double crystal diffraction rocking curve shows that there are mosaic structural defects in the sample. A phase transition st 249+/-1.5% K from a simple cubic to a face centered cubic structure is confirmed by in situ observation of synchrotron radiation white beam x-ray topography with the temperature varing from 230 to 295 K.
Resumo:
A new framework of non-local model for the strain energy density is proposed in this paper. The global strain energy density of the representative volume element is treated as a non-local variable and can be obtained through a special integral of the local strain energy density. The local strain energy density is assumed to be dependent on both the strain and the rotation-gradient. As a result of the non-local model, a new strain gradient theory is derived directly, in which the first and second strain gradients, as well as the triadic and tetradic stress, are introduced in the context of work conjugate. For power law hardening materials, size effects in thin metallic wire torsion and ultra-thin cantilever beam bend are investigated. It is found that the result predicted by the theoretical model is well consistent with the experimental data for the thin wire torsion. On the other hand, the calculation result for the micro-cantilever beam bend clearly shows the size effect.
Resumo:
The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.
Resumo:
To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.