25 resultados para Congestion Charging
Resumo:
A series of titanium and zirconium complexes based on aminoiminophosphorane ligands [Ph2P(Nt-Bu)(NR)](2)MCl2 (4, M = Ti, R = Ph; 5, M = Zr, R = Ph; 6, M = Ti, R = SiMe3; 7, M = Zr, R = SiMe3) have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 4 has been determined by X-ray crystallography. The observed very weak interaction between Ti and P suggests partial pi-electron delocalization through both Ti and P. The complexes 4-7 are inactive for ethylene polymerization in the presence of modified methylaluminoxane (MMAO) or i-Bu3Al-Ph3CB(C6F5)(4) under atmospheric pressure, and is probably the result of low monomer ethylene concentration and steric congestion around the central metal.
Resumo:
In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.
Resumo:
Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.
Resumo:
The electrochemical behaviour of N-benzylaniline polymerization is determined by the nature of the electrolyte. The voltammograms for a poly-N-benzylaniline modified Pt electrode prepared in 1 M HCl (abbreviated to PBAn(HCl)), and 1 M H2SO4 (PBAn(H2SO4)) tested in 1 M hydrochloric, sulfuric, and perchloric acid were almost superimposable. The polymer film electrode prepared in 1 M HClO4 (abbreviated to PBAn(HClO4)) is electroinactive, and exhibits only charging behaviour in 1 M HClO4 solution and can be activated in hydrochloric or other acid electrolytes with a smaller anion. These interesting phenomena are explained in terms of the anions catalyzing the loss of benzyl groups.
Resumo:
Exploration study proves that East sea shelf basin embeds abundant hydrocarbon resources. However, the exploration knowledge of this area is very low. Many problems in exploration are encountered here. One of them is that the gas reservoir of this area, with rapid lateral variation, is deeply buried. Correlation of Impendence between sandstone, gas sand and shale is very poor. Another problem is that the S/N ratio of the seismic data is very low and multiples are relatively productive which seriously affect reservoir identification. Resolution of the seismic data reflected from 2500-3000 meter is rather low, which seriously affects the application of hydrocarbon direct identification (HDI) technology. This research established a fine geological & geophysical model based on drilling、well logging、geology&seismic data of East sea Lishui area. A Q value extraction method from seismic data is proposed. With this method, Q value inversion from VSP data and seismic data is performed to determine the subsurface absorption of this area. Then wave propagation and absorption rule are in control. Field acquisition design can be directed. And at the same time, with the optimization of source system, the performance of high resolution seismic acquisition layout system is enhanced. So the firm foundation is ensured for east sea gas reservoir exploration. For solving the multiple and amplitude preserving problems during the seismic data processing, wave equation pre-stack amplitude preservation migration and wave equation feedback iteratively multiple attenuation technologies are developed. Amplitude preservation migration technology can preserve the amplitude of imaging condition and wave-field extrapolation. Multiple removing technology is independent of seismic source wavelet and velocity model, which avoiding the weakness of Delft method. Aiming at the complicated formation condition of the gas reservoir in this area, with dissecting typical hydrocarbon reservoir, a series of pertinent advanced gas reservoir seismic identification technologies such as petrophysical properties analyzing and seismic modeling technology、pre-stack/post-stack joint elastic inversion, attribute extraction technology based on seismic non-stationary signal theory and formation absorption characteristic and so on are studied and developed. Integrated analysis of pre-stack/post-stack seismic data, reservoir information, rock physics and attribute information is performed. And finally, a suit of gas reservoir identification technology is built, according to the geological and geophysical characteristics of this area. With developed innovative technologies, practical application and intergrated interpretation appraisal researches are carried out in Lishui 36-1.The validity of these technologies is tested and verified. Also the hydrocarbon charging possibility and position of those three east sea gas exploration targets are clearly pointed out.
Resumo:
Baijiahai uplift is an important hydrocarbon accumulation belt in eastern Jungger Basin, on which Cainan oilfield and lithologic hydrocarbon reservoir named Cai 43 have been discovered and both of them share the same target formation of Jurassic. However, in the subsequent exploration at this region, several wells that designed for lithologic traps of Jurassic were eventually failed, and that indicates the controlling factors of lithologic reservoir distribution are far more complicated than our previous expectation. This dissertation set the strata of the Jurassic in well Cai 43 region as the target, and based on the integrated analysis of structure evolution、fault sealing ability、simulations of sedimentary microfacies and reservoir beds、distribution analysis of high porosity-high permeability carrier beds、drive forces of hydrocarbons、preferential conduit system and conduit model as well as critical values of the reservoir physical properties for hydrocarbon charging, a special method that different from the conventional way to predict favorable lithologic traps was established. And with this method the controlling factors of the hydrocarbon reservoirs formation are figured out, and further more, the favorable exploration targets are point out. At Baijiahai uplift, fault plays as a crucial factor in the process of the hydrocarbon reservoir formation. In this study, it is found out that the availability of a fault that work as the seal for oil and gas are different. The critical value of the lateral mudstone smear factor (Kssf), which is used to measure the lateral sealing ability of fault, for oil is 3.9 while that for gas is 2.1; and the critical value of vertical sealing factor (F), which similarly a measurement for the vertical sealing ability of fault, for oil is 7.3 while that for gas is 5.1. Dongdaohaizi fault belt that possessed well lateral sealing ability since later Cretaceous have bad vertical sealing ability in later Cretaceous, however, it turns to be well now. Based on the comparison of the physical properties that respectively obtained from electronic log calculating、conventional laboratory rock analysis and the additive-pressure bearing laboratory rock analysis, we established the functions through which the porosity and permeability obtained though conventional method can be converted to the values of the subsurface conditions. With this method, the porosity and permeability of the Jurassic strata at the time of previous Tertiary and that in nowadays are reconstructed respectively, and then the characteristics of the distribution of high porosity-high permeability carrier beds in the evolution processes are determined. With the result of these works, it is found that both well Cai 43 region and Cainan oilfield are located on the preferential conduit direction of hydrocarbon migration. This conclusion is consistent with the result of the fluid potential analysis, in which fluid potential of nowadays and that of later Cretaceous are considered. At the same times, experiment of hydrocarbon injection into the addictive-pressure bearing rock is designed and conducted, from which it is found that, for mid-permeability cores of Jurassic, 0.03MPa is the threshold values for the hydrocarbon charging. And here, the conception of lateral pressure gradient is proposed to describe the lateral driving force for hydrocarbon migration. With this conception, it is found that hydrocarbons largely distributed in the areas where lateral pressure gradient is greater than 0. 03MPa/100m. Analysis of critical physical properties indicated that the value of the critical porosity and critical permeability varied with burial depth, and it is the throat radius of a certain reservoir bed that works as a key factor in controlling hydrocarbon content. Three parameters are proposed to describe the critical physical properties in this dissertation, which composite of effective oil-bearing porosity、effective oil-bearing permeability and preferential flow coefficient. And found that critical physical properties, at least to some extent, control the hydrocarbon distribution of Jurassic in Baijiahai uplift. Synthesize the content discussed above, this dissertation analyzed the key factors i.e., critical physical properties、driving force、conduit system and fluid potential, which controlled the formation of the lithologic reservoir in Baijiahai uplift. In all of which conduit system and fluid potential determined the direction of hydrocarbon migration, and substantially they are critical physical properties of reservoir bed and the lateral pressure gradient that controlled the eventually hydrocarbon distribution. At the same times, sand bodies in the major target formation that are recognized by reservoir bed simulation are appraised, then predict favorite direction of the next step exploration of lithologic reservoir.
Resumo:
Changling fault depression is a compound fault depression complicated by interior fault, with faults in the west and overlap in the west. North of Changling fault depression show NNE strike while south is NW strike. Changling fault depression has undergone twochasmic stage which control the development and distribution of volcanic rock, one depression stage, later inversion and uplift stage which control the formation of natural gas reservoir, and basin atrophic stage. The main boundary faults and main faults in Changling fault depression control three volcanic cycles and the distribution of volcanic rock. Seismic reflection characteristic and logging response characteristic of volcanic rock in study area are obvious, and the distribution characteristic, volcanic cycle and active stage of volcanic rock can be revealed by seismic attribute, conventional logging data can distinguish clastic rock from volcanic rock or distinguish partial different types of volcanic rock. The reservoir property of rhyolite and volcanic tuff are the best. Favorable volcanic reservoir can be preserved in deep zone. Imaging logging and frequency decompostion technology of seismic data act as effective role in the study of reservoir physical property and gas-bearing properties of volcanic rock.. Hydrocarbon gas in study area is high and over mature coal type gas, the origin of CO2 is complex, it is either inorganic origin or organic origin, or mixing origin. Hydrocarbon gas is mainly originate from Shahezi formation and Yingcheng formation source rocks, CO2 is mainly mantle source gas. Hydrocarbon has the characteristics of continuous accumulation with two charging peak. The first peak represent liquid hydrocarbon accumulation time, The second peak stand for the accumulation time of gaseous hydrocarbon.CO2 accumulate approximately in Neocene. The source rock distribution range, volcanic rock and favorable reservoir facies, distribution characteristic of deep fault (gas source fault) and late inversion structure are the major factors to control gas reservoir formation and distribution. All the results show that these traps that consist of big inherited paleo uplift(paleo slope), stratigraphic overlap and thinning out, volcanic rock, are the most advantageous target zone.
Resumo:
The north steep slope zone of Dongying Depression has great potential in oil resource and as the usage of 3-d seismic data in the last decade, the exploration of oil and gas has get into the stage of sandy glavel body lithological oil-gas pool exploration. In this thesis, writer take the north steep slope zone of Dongying Depression as target area and take Sha-III and Sha-[V Menber as purpose stratum, study on sequence stratigraphy, depositional system, reservoir description, emphasesing on analyzing of forming of lithological oil-gas pool, especially the dynamics principle of oil and gas preliminary movement from the source rock to the reservoir form lithological oil-gas pools. The aim of this work is to give some quantitatively explanation for the mechanism of lithological oil-gas pool forming, and set up the theory of pool form with characteristic terrestrial faulted basin. There are main conclusions and views as follow. 1. Applying with principle of sequence stratigrapgy, according to the depositional cycles of Dongying Depression, the sequence stratigraphical partition of Tertiary was finished, stressing on dismembering Sha-III and Sha-IV Menber as 5system tracts. 2. The structure of Dongying Depression especially of the north steep slope zone has accomplished, including the analyzing the structural cortroling to depositional condition of the north steep slope zone of Dongying Depression, discussed relationship between the structure of the north steep slope zone and the pool-forming. 3. The horizontal and vertical exchanges of ancient climates and ancient physiognomy of the all stratum units and studies on characteristic of depositional system distribution have been finished, found that there are five depositional systems in the north steep slope zone of Dongying Depression as fluvial, delta (tan-delta), sub-water fluvial fan lacustrine, gravitive flow, and seven formations of sandy glavel body, and forecasting of all kinds of sandy glavel body has been made. 4. Seismic stratigraphy and log stratigraphy have been made, described and forecasted all kinds of reservoir of objective stratum by means of physical geography method, setup a series means of sandy glavel body description suit to target area. 5. The pool-forming system has been studied, analyzing all the elements in petroleum sub-system of Sha-III and Sha-IV Menber of Dongying Depression with view of source controlling, estimated the petroleum system applying source rock potential index combining with distribution ofreservior. 6.Through studying types of pool, the controlling factors of pool-forming of sandy glavel body were discussed by deposition stages, formation types, structure ect. as a conclusion that the characteristics of pool forming in the north steep slope zone of Dongying Depression are, the controlling factor of the pools is mainly lithology, petrophysics of oil sands vary greatly, with a large heterogeneity, all kind of reservoir with different formation has different pool-forming conditions, and as a result, formed various pools of sandy glavel body along the steep slope with regular combination, distribution and constituted the multiple petroleum accumulative pattern. 7. It's the first time to cauculate and estimate the fluid pressure in source rock of Dongying Depression, set up the stratum fluid pressure in Dongying Depression, and firstly use equivalent charging pressure and reservoir forming index to quantitatively evaluate the pool-forming condition of lithological pool.8. Above all studies, follow up the scent of the exploration combined with practice a lot of explorative targets were found, and got geat economic and social benefit.
Resumo:
The modeling of petroleum flow path (petroleum charging) and the detail of corresponding software development are presented in this paper, containing principle of petroleum charging, quantitative method, and practical modeling in two oil fields. The Modeling of Petroleum Flow Path is based on the result of basin modeling, according to the principle of petroleum migrating along the shortest path from the source to trap, Petroleum System Dynamics (Prof. Wu Chonglong, 1998), the concept of Petroleum Migration and Dynamic Accumulation (Zhou Donyan, Li Honhui, 2002), etc. The simulation is done combing with all parameters of basin, and considering the flow potential, non-uniformity of source and porous layer. It's the extending of basin modeling, but not belong to it. It is a powerful simulating tool of petroleum system, and can express quantitatively every kind of geology elements of a petroleum basin, and can recuperate dynamically the geology processes with 3D graphics. At result, we can give a result that the petroleum flow shows itself the phenomena of main path, and without using the special theory such as deflection flow in fractures(Tian Kaiming, 1989, 1994, Zhang Fawang, Hou Xingwei, 1998), and flow potential(England, 1987). The contour map of petroleum flow quantitative show clearly where the coteau - dividing slot is, and which convergence region are the main flow path of petroleum, and where is the favorable play of petroleum. The farsighted trap can be determined if there are enough information about structural diagram and can be evaluated, such as the entrapment extent, spill point, area, oil column thickness, etc. Making full use of the result of basin modeling with this new tool, the critical moment and scheme of the petroleum generation and expulsion can be showed clearly. It's powerful analysis tool for geologist.
Resumo:
The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25