29 resultados para Conformal invariants
Resumo:
A four-phase confocal elliptical cylinder model is proposed from which a generalised self-consistent method is developed for predicting the thermal conductivity of coated fibre reinforced composites. The method can account for the influence of the fibre section shape ratio on conductivity, and the physical reasonableness of the model is demonstrated by using the fibre distribution function. An exact solution is obtained for thermal conductivity by applying conformal mapping and Laurent series expansion techniques of the analytic function. The solution to the three-phase confocal elliptical model, which simulates composites with idealised fibre-matrix interfaces, is arrived at as the degenerated case. A comparison with other available micromechanics methods, Hashin and Shtrikman's bounds and experimental data shows that the present method provides convergent and reasonable results for a full range of variations in fibre section shapes and for a complete spectrum of the fibre volume fraction. Numerical results show the dependence of the effective conductivities of composites on the aspect ratio of coated fibres and demonstrate that a coating is effective in enhancing the thermal transport property of a composite. The present solutions are helpful to analysis and design of composites.
Resumo:
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Researc h Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL.
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
We extend the recently proposed Kerr/CFT correspondence to examine the dual conformal field theory of four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. For the extremal Kaluza-Klein black hole, the central charge and temperature of the dual conformal field are calculated following the approach of Guica, Hartman, Song and Strominger. Meanwhile, we show that the microscopic entropy given by the Cardy formula agrees with Bekenstein-Hawking entropy of extremal Kaluza-Klein black hole. For the non-extremal case, by studying the near-region wave equation of a neutral massless scalar field, we investigate the hidden conformal symmetry of Kaluza-Klein black hole, and find the left and right temperatures of the dual conformal field theory. Furthermore, we find that the entropy of non-extremal Kaluza-Klein black hole is reproduced by Cardy formula. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
从无线传感器网络(WSN)环境数值监测应用的实际需求出发,提出了一种应用于该类场景中的等值线绘制(CMBC)算法.CMBC算法基于图形学中常用的贝塞尔(Bezier)曲线理论,通过选择部分节点提供信息给网关节点绘制等值线.此方法有效解决了监测应用场景中对最终监测精度的需求与大量报告节点所引发的高流量负载和网络能耗之间的矛盾.仿真结果表明,CMBC算法和已有研究工作相比能够使用更少的汇报节点完成高精度等值线的绘制,因此CMBC算法能够节省节点的能量,延长网络的生存期.
Resumo:
In this article, two schemes are suggested based on three exons of beta-globin gene belonging to 10 species for comparison of DNA primary sequences. At first, the positions of four nucleic acid bases were extracted, and then based on the information, as the numerical characterization of DNA sequences, the sequence invariants were derived. Sequences comparisons of 10 species selected in this work by using these invariants were performed. The results, especially with scheme 2, are quite satisfactory.
Resumo:
Micromolding in capillaries (MIMIC) and non-conformal contact micromolding (NCCM) were employed to pattern the silica microspheres by the use of capillary forces. Three types of silica microspheres aggregations, small dot, ring and grid patterns, from the same prepatterned poly(dimethylsiloxane) (PDMS) stamps, were created by tuning the contact mode between the PDMS mold and the substrate and the concentration of silica microspheres suspension during the micromolding. The formation mechanisms of different patterns were discussed.
Resumo:
This paper describes a simple approach to fabricate aggregates composed of monodispersed silica microspheres by modified micromolding in capillaries (MIMIC). Two different kinds of contact modes, namely, conformal contact and non-conformal contact, between the poly(dimethylsiloxane) (PDMS) mold and the underlying prepatterned substrate, can be controlled during the micromolding, which result in the formation of different aggregates under the influence of template confinement and capillary forces. These aggregates, including woodpile structure, discoid, conoid and rectangular clusters, possess well-controlled sizes and orientation. The possible mechanisms for the formation of different aggregates are discussed in detail.
Resumo:
A highly discriminating molecular topological index, EAID, is proposed based on the extended adjacency matrix. A systematic search for degeneracy was performed for 3 807 434 alkane trees, 202 558 complex cyclic or polycyclic graphs, and 430 472 structures containing heteroatoms. No counterexamples (two or more nonisomorphic structures with the same EAID number) were found. This is a hitherto unheard of power of discrimination. Thus EAID might be possibly used as supplementary reference for CAS Registry Numbers for structure documentation.
A new topological index for the Changchun institute of applied chemistry C-13 NMR information system
Resumo:
A method to assign a single number representation for each atom (node) in a molecular graph, Atomic IDentification (AID) number, is proposed based on the counts of weighted paths terminated on that atom. Then, a new topological index, Molecular IDentification (MID) number is developed from AID. The MID is tested systematically, over half a million of structures are examined, and MID shows high discrimination for various structural isomers. Thus it can be used for documentation in the Changchun Institute of Chemistry C-13 NMR information system.
Resumo:
A method for estimating the one-phase structure seminvariants (OPSSs) having values of 0 or pi has been proposed on the basis of the probabilistic theory of the three-phase structure invariants for a pair of isomorphous structures [Hauptman (1982). Acta Cryst. A38, 289-294]. The test calculations using error-free diffraction data of protein cytochrome c(550) and its PtCl42- derivative show that reliable estimates of a number of the OPSSs can be obtained. The reliability of the estimation increases with the increase of the differences between diffraction intensities of the native protein and its heavy-atom derivative. A means to estimate the parameters of the distribution from the diffraction ratio is suggested.
Resumo:
The estimate formulas for the two-phase structure seminvariants (TPSSs) in the presence of anomalous scattering are obtained from the estimate of the two-phase structure invariants [Hauptman (1982). Acta Cryst. A38, 632-641; Giacovazzo (1983). Acta Cryst.
Resumo:
A new algorithm for deriving canonical numbering of atoms in a molecular graph has been developed. Some graph invariants, such as node properties, degree (connectivity), topological path, the smallest node ring index, etc., are encoded together to partit