114 resultados para Co-doping
Resumo:
The effect of HCl and SO_2 on CO oxidation in pulverised coal flames was investigated experimentally and kinetically in an entrained flow combustion reactor. Two bituminous coals (German 'Goettelborn' and a Polish coal) were used as fuels with a feeding rate of 1 or 1.5 kg/h. HCl or SO_2 is introduced into the reactor premixed with the primary air. Experimental results indicate that HCl addition may inhibit CO oxidation in coal flames and increases CO emission. Reducing temperature in the reactor will enhance the inhibitory effect of HCl on CO oxidation. The measured CO profiles along the reactor height clearly show that the addition of HCl may inhibit CO oxidation. In the experimental range of SO_2 addition. The inhibiting effect of SO_2 on CO oxidation is less significant than HCl. A detailed kinetic mechanism is used to model the reactions. And the controlling reactions are analysed.
Resumo:
垃圾衍生燃料 (Refuse-Derived Fuels-RDF)具有热值高、易燃烧的优点。RDF的一个潜在应用是与煤进行混烧,替代一部分锅炉燃烧用煤。由于RDF挥发份相当高,因此燃烧时的污染物排放不易控制。本文在非均匀布风流化床中进行了RDF与煤的混烧试验,测量了H_2O、CO、CO_2、NO、N_2O、HCl、SO_2等污染物质的排放特性。结果表明与单纯燃烧RDF相比,混烧时的CO生成量大大下降;SO2生成浓度较低,而HCl的生成量比单纯烧煤时明显增加。
Resumo:
给出相对论力学中普遍定律的实用判别法和协变集的实用构造法,还给出实现非普遍定律的“可导出性”的一种实用方法.
Resumo:
The chemisorption of CO on a Cr( 110) surface is investigated using the quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant and a model Cr2CO cluster. The present results are consistent with the earlier ab initio HF study with this model that showed the tilted/ near-parallel orientation as energetically favoured over the perpendicular arrangement. The DMC energy difference between the two orientations is larger (1.9 eV) than that computed in the previous study. The distribution and reorganization of electrons during CO adsorption on the model surface are analysed using the topological electron localization function method that yields electron populations, charge transfer and clear insight on the chemical bonding that occurs with CO adsorption and dissociation on the model surface.
Resumo:
In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
本文对黑体辐射泵浦CO_2激光和N_2O激光由于CO和H_2O的加入所引起的激光功率变化进行了理论和实验研究.CO的加入可使的N_2O激光功率增加28%.
Resumo:
为了分析CO激光的特性,通常需要对上百个方程进行数值计算,因而解析的分析就成为一个很值得探讨的方面。本文从分布函数方程和辐射强度谱分量传输方程出发,导出稳态CO激光在级联跃迁发射时的增益饱和特性,得到的强度谱分量与增益的关系式适用于均匀和非均匀加宽同时起作用的一般情况。文中所使用的振动分布函数由一个非线性积分方程求得。对两能级特例,本文结果与文献[9]一致。对均匀加宽极限的特例,本文给出的强度和强度谱分量的关系式与文献[4]的结果一致。
Resumo:
在非均匀布风的流化床燃烧系统中进行了半焦中添加PVC/NaCl的混烧试验,研究了Cl元素对燃烧中CO氧化的影响以及混烧时SO_x等污染物的生成规律.试验结果表明,半焦与PVC/NaCl混烧在技术上可行,添加Cl元素抑制CO氧化,加入PVC增加SO_2排放,而加入NaCl则减少SO_2排放.
Resumo:
卤族元素在燃烧时会影响CO的氧化和NO的生成。本文通过化学平衡方法分析了H2O和HCl对于CO氧化的协同效应,在非均匀布风流化床中进行了PVC塑料与煤或半焦的混烧试验,测量了CO和CH4的排放特性,从而从理论上和实验上证明了HCl对CO氧化的抑制作用。并给出了今后研究的方向和问题。
Resumo:
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Resumo:
The exhaust gases from industrial furnaces contain a huge amount of heat and chemical enthalpy. However, it is hard to recover this energy since exhaust gases invariably contain combustible components such as carbon monoxide (CC). If the CO is unexpectedly ignited during the heat recovery process, deflagration or even detonation could occur, with serious consequences such as complete destruction of the equipment. In order to safely utilize the heat energy contained in exhaust gas, danger of its explosion must be fully avoided. The mechanism of gas deflagration and its prevention must therefore be studied. In this paper, we describe a numerical and experimental investigation of the deflagration process in a semi-opened tube. The results show that, upon ignition, a low-pressure wave initially spreads within the tube and then deflagration begins. For the purpose of preventing deflagration, an appropriate amount of nitrogen was injected into the tube at a fixed position. Both simulation and experimental results have shown that the injection of inert gas can successfully interrupt the deflagration process. The peak value of the deflagration pressure can thereby be reduced by around 50%. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The influence of HCl on CO and NO emissions was experimentally investigated in an entrained flow reactor (EFR) and an internally circulating fluidized bed (ICFB). The results in EFR show the addition of HCl inhibits CO oxidation and NO formation at 1073 K and 1123 K. At the lower temperature (1073 K) the inhibition of HCl becomes more obvious. In ICFB, chlorine-containing plastic (PVC) was added to increase the concentration of HCl during the combustion of coal or coke. Results show that HCl is likely to enhance the reduction of NO and N2O. HCl greatly increases CO and CH4 emission in the flue gas. A detailed mechanism of CO/NO/HCl/SO2 system was used to model the effect of HCl in combustion. The results indicate that HCl not only promotes the recombination of radicals O, H, and OH, but also accelerates the chemical equilibration of radicals. The influence of HCl on the radicals mainly occurs at 800-1200 K. (C) 2009 Elsevier Ltd. All rights reserved.