58 resultados para Citrus ssp
Resumo:
Hippophae rhamnoides ssp. sinensis occurs mainly in the and regions of northwest China. The wood stands of this subspecies play an important role in maintaining the local ecosystems in these regions. In addition, the genetic characteristics are essential to understand the historical range changes of this subspecies and its morphological differentiation with other subspecies. In this study, we developed nine microsatellite loci for this subspecies for the first time. We used the combining biotin capture method to enrich AG/CT/AC/GT/CG/GTG/CCA microsatellites. Twenty-six microsatellites were isolated from the enriching library and nine of them were found to be polymorphic through screening 12 distantly distributed individuals. The number of alleles per locus ranged from three to twelve and expected heterozygosity from 0.2659 to 0.4767, respectively. We further performed cross-priming tests in another subspecies and two congeneric species. These firstly isolated loci will provide a useful tool to investigate the genetic structure of this subspecies and its morphological differentiation from the other subspecies.
Resumo:
Genomic constitutions of three taxa of Hystrix Moench, H. patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata, were examined by meiotic pairing behavior and genomic in-situ hybridization. Meiotic pairing in hybrids of H. patula x Pseudoroegneria spicata (St), H. patula x Elymus wawawaiensis (StH), H. patula x H. duthiei ssp. longearistata, H. patula x Psathyrostachys huashanica (Ns(h)), H. duthiei ssp. duthiei x Psa. huashanica, H. duthiei ssp. longearistata x Psa. huashanica, Leymus multicaulis (NsXm) x H. duthiei ssp. longearistata averaged 6.53, 12.83, 1.32, 0.29, 5.18, 5.11 and 10.47 bivalents per cell, respectively. The results indicate that H. patula has the StH genome and H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have the NsXm genome. Results of genomic in-situ hybridization analysis strongly supported the chromosome pairing data; therefore it is concluded that the type species of Hystrix, H. patula, should be included in Elymus, and that H. duthiei ssp. duthiei and H. duthiei ssp. longearistata should be transferred to Leymus.
Resumo:
泡沙参复合体属沙参属组,原有6个种,从东北连续分布到西南,本研究从辽宁、内蒙古、河北、河南、山西、陕西、甘肃和四川等9个省、市、自治区,采集了22个居群(包括复合体原有的6个种)及筒花组的对照种(A.stcnanthina)一个居群.通过野外和移栽后的对比观测,播种栽培,染色体观察,杂交试验和子代测定,同工酶电泳,并结合多变量统计分析,对复合体从不同水平和角度进行了研究. 1.本复合体多年生,实生苗当年只长基生叶,第二年才抽茎开花,个体花朵很多,因而花期很长(可达2个月).野生个体的结实量很大,种子萌发率接近100%.雌雄异熟,以异花授粉为主.自交(同株异花授粉)亲和,但结实量和萌发率均有所下降.等位酶估测的平均异交率(t)为0.77.末发现无融合生殖现象.全部居群的染色体均为2n= 34.末发现倍性和基数的变化. 2.同一个体的野生及栽培观测表明,根、茎、花序分枝等都是环境可塑性很高的性状,而叶片形态、花萼裂片长则有明显的发育可塑性,茎叶被毛、花部、果实和种子性状的可塑性较小. 3.针对在以往复合体类群划分中起鉴别作用的叶型、叶缘锯齿、茎叶被毛等几个性状,进行了大量的子代测定、杂交试验和天然居群的分析,结果表明,叶型、叶缘锯齿数目和大小、茎叶被毛等都是相关性很强的一组性状,但它们在天然居群中连续变化,是受多基因决定的数量性状.根据这些性状所划分的几个“种”,不过是连续变异的极端个体,极端个体(“种”)的自由授粉子代会分离出各种性状状态的个体,包括变异另一极端(另一个“种”)的个体,极端个体间的杂交进一步证实了这些数量性状的变异.据此,并结合地理分布,将A.bockiana和A.polydentata归并在A.potaninii之中:将A.biformifolia归并在A.wawreana之中.并证明A.wawreanavar. lanceifolia并不存在. 4.对20个居群34个形态性状的统计学和主成分分析表明,不同性状的系统学意义不一样,具有较大分类价值的性状是那些可塑性低、群内变异小的花部、果实、种子和部分营养性状.根据性状变异式样的分析和20个居群二套性状的聚类结果,可将复合体分为两个区别明显的类群.其中A.lobophylla形态十分独特,仅分布在四川西北部.另一个广布类群,在一些性状上体现出由西南(原A.potaninii)至东北(原A.wawreana)的地理变异式样,但性状在山西、陕西一带有过渡,是两个分化不充分的类群. 5.对复合体内8个居群及对照种居群的杂交试验表明,根据形态性状分析所归并的三个“种”与复合体其它类群间没有任何育性障碍,证实了归并的合理性。与此同时,发现根据形态变异式样所划分出的两个分化明显的类群(A.lobophylla与A.wawrcana和A.potaninii)间有很大的生殖隔离,不仅杂交结实量很低,杂交种子萌发率均小于10%.说明它们之间的亲缘关系较远,而A.lobophylla与筒花组的A.stenauthina间却有很高的杂交亲和性,平均结实量为53,与同种居群内的结实量相当;杂交种子萌发率达65%左右.只稍低于两个种各自居群内杂交的种子萌发率.因此,根据形态学,生境特点和杂交试验,建议将A.lobophylla放在远离本复合体的筒花组内. 6.采用控制杂交等方法确定了8个酶系统共10个等位酶位点的遗传基础.采用等位酶分析技术对复合体14个居群及一个对照种居群进行了测定.结果表明,本复合体植物的遗传变异水平很高,多态位点百分率(P)为79.2.等位基因平均数(A)为2.35,平均期望杂合度(He)为0.284.居群处于中等分化程度.总的等位酶变异中,有31%来自于居群间(FST=0.311).而其余69%左右存在于居群内.相比之下,四川西北的特有种A.lobophylla遗传变异水平稍低(P=70.0,A=2.0,He=0.211),尤其是居群中的杂合体比例明显偏离理论期望比例,异交率估计值(t)为0.535. 7.本复合体丰富的遗传变异和高度的环境可塑性使其适应性强,分布范围广.物种形成的方式基本上是地理式的,南部居群和北部居群是两个分化不完全的地理宗,并仍处在强烈的分化之中.对本复合体、A.lobophylla和对照种A.stenanthina形态学、杂交及等位酶分析表明,沙参属起源较晚、进化速度较快.推测在其起源早期,历了一段快速的适应性辐射阶段,随后则以地理式物种形成过程为主,逐渐发展为当今这样一个中等大小的属. 8.通过上述各方面的研究,最后将本复合体原有的6种l变种归并为两个种,即A.potaninii Korsh.和A.lobophylla Hong.后者实际上不属于本复合体,而是另一个组--筒花组的成员;而前者包含两个亚种:ssp.potaninii和ssp.wawreana Ge et Hong.
Resumo:
根据现有记载,萱草属约有20种,主要分布在东亚,由于种间在外部形态和核型上的高度相似性,加之长期人工栽培,使本属植物的分类成为一个难题,我们做了大量的野外调查和温室栽培试验,获得了一些有意义的观察结果,对核型变异做了详细定量分析:系统观察了花粉扫描电镜特征,为了揭示属内可能的表征和分支关系,运用聚类分析,主成分分析及简约分析对属下类群做了定量研究.本文得到如下主要结论. 1.虽然迄今为止许多核型观察结果未能得到有分类学意义的结论,运用数量分析方法比较各分类群核型定量变异结果表明,其分类学意义是明显的,例如,北黄花菜、黄花菜和小黄花菜三者外部形态很一致,核型亦高度相似:大苞萱草和多花萱草的核型公式虽与前三者相同,但已出现明显的数量变异.同样,北萱草,折叶萱草和西南萱草虽有相同核型公式,亦出现明显数量变异.萱草则与所有其他类群的核型均有明显差别.核型对称性分析表明,臂比不对称性出现一个由低到高的演变序列:但长度不对称性与此无明显相关性.萱草和折叶萱草的臂比不对称性最低,西南萱草和北萱草升高,黄花菜,大苞萱草和多花萱草等最高. 2.观察到三种类型花粉;舟形具网纹,舟形具疣纹和亚球形具疣纹.萱草,北萱草,大苞萱草,北黄花菜,黄花菜,小黄花菜及多花萱草具第一种类型花粉;折叶萱草和西南萱草具第2种类型花粉;矮萱草具第三种花粉.以广义百合科其他类群作为复合外类群进行比较,推测花粉形态的演化序列为:舟形具网纹一舟形具疣纹一亚球形具疣纹. 3.在外部形态上,萱草因具二叉分枝花序,叶型苞片,根膨大适中,花蕾顶部绿色及花筒占花被比例较小等原始性状状态,结合不对称性较低的核型特征和舟形具网纹花粉特征,是现存种类中最原始类群;折叶萱草及北萱草等具较短的花筒,二叉分枝花序,单色花被及花蕾部绿色等特征显得进化程度不高.黄花菜因具夜间开花习性,长花筒,叶鞘红色等状态被认为是进化类群,大苞萱草高度压缩的花序形成头状花序,具总苞状宽大苞片及绳索状根被认为是特化类群,矮萱草个体矮小,单花,具亚球形疣纹花粉亦被认为是高度特化类群.外部形态,花粉特征,核型及地理分布之间存在着相关性;随地理水平分布由南向北,外部形态特征由原始到进化,核型不对称性由低到高:随地理垂直分布由低向高,形态特征由复杂到简化,核型不对称性由低到高,花粉形态由舟形具网纹到舟形具疣纹再到亚球形具疣纹,这两种趋势结合起来构画出了本属植物演化和地理分布的基本轮廊. 4.萱草是一个孤立的属,没有明确的外类群可供比较.在现存类群中.Dahlgren等(1985)认为本属与分布在非洲,地中海地区,西亚及中亚的Asphodeloideae(亚科)有较多的共有特征.本文比较了两个类群之后发现,萱草不但在许多一般特征上与Asphodeloideae -致,而且在小孢子同时型发生及含蒽醌等被认为是Asphodeloideae典型属性的特征上亦与后者相同.这些共有特征显示出二 者在系统发育上一定的联系.进一步比较发现两者在有差异的特征中,萱草属显得较为进化.二者的分布区是完全不同的;Asphodeloideae分布在中亚及其以西地区和非洲,而本属分布在东亚,延及西伯利亚,据本文分析,欧洲生长的一个种(H.lilioasphodelus,北黄花菜)是归化类群.北美和台湾没有自然分布,但栽培植物均生长良好,而且已有归化植物.由此似乎可以推测,本届的祖先与Asphodeloideae的祖先有亲缘关系,这种关系似可远溯到第三纪古地中海时期,或许当时与Asphodeloideae祖先有关系的一个分支分布于古地中海东南缘的康滇古陆,即与现今横断山地区相应的地区,由于喜玛拉雅造山运动引起的地质,地理和气候剧变,某些类群灭绝了,一个类群发展成现今的萱草属. 5.由于本属各分类群间形态及核型相似性程度较高,种间极易(人工)杂交,似无必要在属与种间增设组或系,根据本文研究结果及参考有关分类文献(国外种类),我们将萱草属处理为10种2亚种13变种:H.darrowiana Hu;小萱草(H.dumortieri Morr.)及北萱草(var. esculenta (Koidz.) Kitamura;西南萱草(H.forrestii Diels);萱草(H.fulva (L.) L.)及var. aurantiaca (Baker) Hotta, var. disticha (Donn.) Baker,重瓣萱草(var. kwanso Regel),var. littorea (Makino)Hotta,长菅萱草(var. longituba (Miq.) Maxim,var. maculata Baroni,var. pauciflora Hotta et Matsuoka, var. rosea Stout, var. sempervirens (Araki) Hotta; H. hakuunensis Nakai;北黄花菜 (H. lilioasphodelus L. Var. lilioasphodelus)及黄花菜(ssp. citrina (Baroni) Xiong),小黄花菜(ssp. minor(Mill.) Xiong),var. corcana (Nakai) Xiong;大苞萱草 (H. middendorfii Trautv. et Mey var. middendorfii)及var. exaltata (Stout) Kitamura,长苞萱草(var. longibracteata Xiong);多花萱草(H. multiflora Stout);矮萱草(H. nana Smith ct Forrest);折叶萱草(H.plicata Stapf)。
Resumo:
本文对木通科植物进行全面分类学修订,确认8属35种(包括16亚种)。这8个属是:猫儿屎属(Decaisnea,1种),串果藤属(Sinofranchetia,1种),牛藤果属(parvatia,2种),野木瓜属(Stauntonia,24种),长萼木通属(Archakebia,1种),木通属(Akebia,4种),拉氏藤属(Lardizabala,1种)和勃奎拉属(Boquila,1种)。我们建立了1个新属(长萼木通属Archakebia)、4个新种(短蕊八月瓜Stauntonia brachyandra,厚叶八月瓜S.crassifolia,离丝野木瓜S.libera和墨脱八月瓜S.medogensis)和5个新亚种(长萼三叶木通Akebia trifolialassp. longisepala,线叶五风藤Stauntonia angustifolia ssp. linearifolia,三叶五风藤S.a.ssp, trifoliata,海南野木瓜S.chinensis ssp. hainaensis和纸叶八月瓜S.latifolia ssp. chartacea),重新组合了8个名称(Parvatia brunoniana ssp. elliptica,Stauntonia angustifolia,S. chapaensis,S.coriacea,S.grandiflora,S.latifolia,S.obovatifoliola .ssp. urophylla和S.pterocaulis)和归并了32个类群(种及种下等级)。 我们对1989年系统进行了补充,在拉氏藤族(tribe Lardizabaleae)中建立两个亚族,并对野木瓜属(Stauntonia)提出一个详尽的属下分类系统,包括两个亚属4个组。本修订主要根据作者对近七千余份腊叶标本的研究和野外考察结果撰写而成。在前一部分中,我们全面阐述木通科形态性状特征及其演化意义,并应用于科下种上分类群的划分及其亲缘关系讨论。在此基~础上,我们进一步确认串果藤族(Sinofranchetieae)和猫儿屎族(Decaisneeae)均为木通科植物早期演化的分支,也是系统位置比较孤立的类群;拉氏藤族(Lardizabaleae)与亚洲类群分开的历史很长,其内部分化也很显著;木通族(Akebineae)是木通科植物演化的主干,也是较晚近时期发生的类群,它正处在强烈分化之中,存在有各种演化式样,是木通科植物分类实践的难点。 作者仍然认为木通科植物是毛茛类与木兰类之间联系的扭带,它可能在白垩纪初期就已经在联合古陆上起源,并在古陆分裂之前就发生了东亚及南美两群植物的隔离事件。 我们在本文后一部分(即分类处理)中,描述了每个种(共35种)的性状特征、物候期、生态习性及其与近缘种的关系,并作出种分布图和形态线描图。最后列出所研究标本的索引(中英对照)。
Resumo:
稻属(OryzaL.)隶属禾本科(Poaceae)之稻族(OryzeaeDUmort.),广布于全球热带与亚热带地区。目前认为该属约含20个野生种和2个栽培种,中国产4个种。亚洲栽培稻(O. sativaL.)是世界上最重要的粮食作物之一,而在中国则为第一粮食作物。在稻种基因库中,发掘野生稻中丰富的遗传多样性是解决当今人口与粮食矛盾的必由之路。因此,保护野生稻的遗传多样性举世瞩目。针对热带与亚热带地区的环境恶化而导致野生稻居群的大量绝灭与急剧萎缩的状况,制订有效的策略,最大限度地保护野生稻的遗传多样性已迫在眉睫。然而,目前对野生稻种内遗传多样性的知识十分贫乏,缺乏制订保护策略的科学基础。这一问题在中国尤为突出。本文基于1994-1995年对中国三种野生稻濒危状况的调查结果,利用等位酶分析对普通野生稻26个居群,药用野生稻8个居群和疣粒野生稻l7个居群进行了遗传多样性的研究,并重点对目前育种价值最大而濒危程度最高的普通野生稻从五个方面作了进一步的探讨。最后根据遗传多样性的研究结果讨论了它们的濒危原因,并提出了初步的保护策略。主要结果如下:
一.普通野生稻D.rufipogon Griff.
在中国的三种野生稻中,普通野生稻的遗传多样性水平最高(A=1.33,P= 0.227,Ho=0.033和He=_0.068),遗传分化水平较低(Fst=0,310)。广西与广东的居群较其它地区的居群具有较丰富的遗传变异。因此,华南可能是中国普通野生稻的遗传多样性中心;云南现存的所有三个居群的遗传多样性水平偏低(A=1.10.p=0.148,Ho=0.007和He=0.079),与该地区栽培稻丰富的遗传多样性形成鲜明对照,普通野生稻居群间的遗传一致度与地理距离无明显相关。
1.通过14个中央居群与5个边缘居群的对比研究表明了边缘居群的遗传结构明显不同于中央居群:其遗传多样性水平与遗传分化均低予中央居群,杂合子比中央居群更为不足。而且,从中央居群到边缘居群,位点的多态性逐渐丧失,遗传多样性水平递减,一些多态位点的等位基因频率逐渐地发生变化。
2. 通过7个受栽培稻基因渗入的居群与5个隔离较好居群的对比研究表明,被渗入居群虽然在形态上表现出复杂的变异式样,但遗传多样性水平并无相应的增高。栽培稻基因流对野生居群遗传结构的影响可能主要是遗传同化,即阻止其居群内与居群间的遗传分化。
3. 通过对2个低纬度居群与2个北缘居群两个生活史阶段的遗传多样性研究表明繁育系统是影响普通野生稻居群遗传结构的因素之一。在低纬度居群中种子阶段的遗传变异高于植株阶段,在高纬度居群中则相反。
4.通过对北缘居群(江西东乡)1980年,1985年和1994年的居群遗传结构的研究,发现该居群的遗传结构逐渐在发生变化,表现为遗传多样性水平不断下降,居群越来越偏移哈迪一温伯格平衡和杂合子变得越来越缺乏。
5.通过对一个典型的普通野生稻居群(元江居群)的居群内遗传结构的研究,表明遗传变异在3个亚居群间分布不均衡,基因型里聚集分布,使得亚居群间有一定的遗传分化。导致其居群遗传结构的亚划分的主要原因可能是有限的基因流(Nm=0.964
Resumo:
本文综合形态学、孢粉学和细胞学以及等位酶分析的实验证据,阐明了中国华中铁角蕨复合体(Asplenium sarelii Hook. Complex)中两个四倍体种的起源问题,并从生物系统学的角度讨论了其中多个种的分类学问题。过去认为的四倍体的“华中铁角蕨”被证明是起源于二倍体华中铁角蕨(A. sarelii Hook.)和二倍体细茎铁角蕨(A. tenuicaule Hayata)的杂交,并被处理为新种:武当铁角蕨(A. wudangense Z.R. Wang et X. Hou, sp. nov.)。 而变异铁角蕨(A. varians Wall., Hook. et Grev.)则被认为起源于二倍体细茎铁角蕨(A. tenuicaule Hayata)和二倍体尖齿铁角蕨(A. argutum Ching)的杂交或二者同源四倍体的杂交。根据原细茎铁角蕨(A. tenuicaule Hayata)和尖齿铁角蕨(A. argutum Ching)在宏观和微观特征上的相似性,以及二者的遗传一致度(0.581~0.705),本文将这两个种处理为细茎铁角蕨(A. tenuicaule Hayata)的两个亚种:细茎亚种(ssp. tenuicaule)和尖齿亚种(ssp. argutum (Ching) Vaine, Rashbach et Reichst., ined.)。依据形态和遗传上的相似性以及各自占有一定部分重叠的分布区域,原云南铁角蕨(A. yunnanense Franch.)、宝兴铁角蕨(A. moupinense Franch.)和云南铁角蕨深裂铁角蕨变种(A. yunnanense Franch. var daraeiforme(Franch.)H. S. Kung)被处理为云南铁角蕨(A. yunnanense Franch.)的三个亚种:云南铁角蕨亚种(ssp. yunnanense)、宝兴铁角蕨亚种(ssp. moupinense (Franch.)Z. R. Wang et X. Hou, st. nov.)和深裂铁角蕨亚种(ssp. daraeiforme(Franch.)Z. R. Wang et X. Hou, st. nov.)。 同时,本文运用孢粉学、细胞学、生态学和形态学的综合手段,处理了中国铁角蕨(Asplenium trichomanes L. s. l.)的种下分类问题,划分了中国该种的四个亚种:原亚种A. trichomanes L. ssp. trichomanes,喜钙亚种A. trichomanes L. ssp. inexpectans Lovis,四倍亚种A. trichomanes L. ssp. quadrivalens D. E. Meyer emend. Lovis,粗轴亚种A. trichomanes L. ssp. pachyrachis (Christ) Lovis et Reichst.,并将一个变种:哈如变种A. trichomanes L. var. harovii Moore emend. Midle,归并入粗轴亚种ssp. pachyrahcis (Christ) Lovis et Reichst.,同时提供了它们在中国的分布情况。查阅研究PE的标本时发现一些定名为为A. trichomanes L. var. centrochinense Christ(中国变种)的模式标本碎片,因在形态上和倍性上均不同于已知分类群,认为应给予种的分类地位。
Resumo:
冷杉属是松科中的第二大属,在北半球有着广泛的分布区,从温带的高纬度地带到亚热带(偶达热带地区)的山地,呈间断不连续的分布。虽然一些学者曾对冷杉属进行过大量的分类学和系统学研究,但该属复杂的变异式样至今仍困扰着植物系统学家们。本论文是在腊叶标本和野外实地调查的基础上,从形态学、解剖学、分子系统学和植物地理学等方面进行分类学和系统发育的分析研究。现得到以下初步结果。1.对冷杉属叶角质层内表面胞间凸缘的研究结果表明,可以分为4种类型: 1. 弯曲且发达的单凸缘;2直且发达的单凸缘;3不发达的单凸缘;4双桥型凸缘。分布于欧洲和亚洲的绝大部分种类都是弯曲且发达的单凸缘类型(日本一种除外),而分布于北美的种类则具有四种不同的类型。 2. 叶横切面的研究结果表明皮下层细胞的发育状况和树脂道的位置与大小在Sect. Balsamea中稳定,皮下层细胞的缺失和不发育、树脂道大且中生在该属中可能反映原始状态。 3. 本研究首次发现nrDNA ITS的长度在属下有较大的变异,变异幅度1700 bp-2500 bp,分析得出引起这一变异的主要原因是由于ITS1中有以GGCCACCCTAGTC为核心数目不等的重复序列的存在,并讨论了ITS长度的变异在冷杉属和松科系统演化中的意义。 4. nrDNA ITS的RFLP分析结果和5种冷杉的ITS序列分析结果(以Keteleeria davidiana为外类群)表明A. bracteata与Sect. Balsamea总是聚在一起,亲缘最近;A. kawakamii应属于Sect. Momi。 5. 地理分布和系统发育分析的研究结果表明,冷杉属的多样性中心在北美西南部、而种类分布最大多的地区为东亚、种群分化最强烈的地区为我国的横断山脉。根据冷杉属的系统发育、化石资料和现代冷杉属的地理分布格局,冷杉属可能起源于白垩纪的高纬度地带。 6. 结合ITS RFLP和ITS序列的分支分析结果以及某些形态特征和地理分布资料,重建属下分类系统,将冷杉属分为8组2亚组。探讨了各组间的亲缘关系,认为Sect. Balsamea是冷杉属中的原始类群,Sect. Balsamea是与Sect. Balsamea亲缘最近,形态上十分特化的类群。来自ITS的分析结果为摒属下亚属的划分和将A. kawakamii自Sect. Balsamea中移出,放入Sect. Momi中提供了强有力的证据。经过标本和文献考证,综合各方面的资料,本文对冷杉属进行了全面系统的分类学修订,包括44种17变种1亚种,系统排列如下: 组1. 树脂冷杉组Sect. 1. Balsamea Engelmann。该组包括8种4变种:Abies balsamea, A. lasiocarpa, A. sibirica, A. sachalinensis, A. fraseri, A. koreana, A. nephrolepis, A. veitchii, A. bracteata。 组3. 日本冷杉组Sect. 3. Momi Franco。 亚组1.日本冷杉亚组Subsect. 1. Firmae (Franco) Farjon et Rushforth。该亚组包括6种3变种:A.holophylla, A. homolepis, A. firma, A. beshanzuensis, A. chensiensis, A. pindrow, A. beshanzuensis var. ziyuanensis, A. chensiensis var. ernestii, A. chensiensis var. salouenensis。 亚组2. 鳞皮冷杉亚组Subsect. 2. Squamatae E. Murray。该亚组包括12种6变种:A squamata, A. delavayi, A. nukiangensis, A. recurvata, A. spectabilis, A. mariesii, A. kawakamii, A. forrestii, A. fargesii, A. fansipanensis, A. fanjingshanensis, A. yuanbaoshanensis, A. delavayi var. fabri, A. delavayi var. motuoensis, A. spectabilis var. densa, A. forrestii var. georgei, A. forrestii var. ferreana, A. fargesii var. faxoniana。 组4. 冷杉组Sect. 4. Abies。该组包括7种1变种1亚种:A. alba, A. cephalonica, A. nordmanniana, A. nebrodensis, A. cilicica, A. pinsapo, A. numidica, A. nordamanniana ssp. equitrojani, A. pinsapo var. marocana。 组5. 太平洋冷杉组成Sect. 5. Amabiles (Matzenko) Farjon et Rushforth。该组仅一种:A. amabilis。 组6. 高贵冷杉组Sect. 6. Nobilis Engelmann。该组有2种1变种:A. procera, A. magnifica, A. magnifica var. shastensis。 组7. 大冷杉组成Sect. 7. Grandes Engelmann, emend. Farjon et Rushforth。该组包括4种2变种:A. concolor, A. grandis, A. durangensis, A. guatemalensis, A. concolor var. lowiana, A. durangensis var. coahuilensis。 组8. 墨西哥冷杉组Sect. 8. Oiamel Franco, emend. Farjon et Rushforth。该组包括A. religiosa, A. vejarii, A. vejari var. mexicana, A. hickelii
Resumo:
稻属Oryza隶属禾本科Poaceae,包括20多个野生种和2个栽培种(亚洲栽培稻O. sativa L和非洲栽培稻O. glaberrima Steud) ,广泛分布于全球热带和亚热带。稻属物种可划分为10个基因组(又称染色体组)类型:A, B, C, BC, CD, E, F, G, HJ 和 HK。栽培稻所属的A基因组是稻属中物种数目最多、地理分布最广的基因组类型,由8个种组成。由于栽培稻属于A基因组,故A基因组物种是栽培稻遗传改良的巨大基因源。数十年来,国际上许多学者对A基因组类群开展了大量涉及形态、细胞、同工酶和分子标记方面的研究,但由于A基因组物种间遗传关系十分接近,形态上差异小且地理分布重叠,使得A基因组物种的系统发育、物种起源和生物地理学等方面存在诸多悬而未决的问题,是稻属中分类和鉴定困难较多的类群。本文利用核基因内含子序列,结合转座子插入分析,重建了A基因组的系统发育,估测了各类群的分化时间;与此同时,基于多克隆测序和基因谱系分析,探讨了O. rufipogon和O. nivara遗传关系以及亚洲栽培稻起源。主要研究结果如下: 1. A基因组的系统发育 在水稻全基因组数据库搜索的基础上,测定了4个单拷贝核基因(Adh1 及3个未注释基因)的内含子序列,构建了稻属A基因组8个种的系统发育关系。基于最大简约法和贝叶斯法的系统发育分析表明:1)澳大利亚的O. meridionalis为A基因组的基部类群;2)亚洲栽培稻两个亚种O. sativa ssp. japonica 和 O. sativa ssp. indica分别和不同的野生类群聚为独立的两个分支,支持japonica 和 indica为多次起源;3)O. rufipogon和O. nivara在系统发育树上完全混在一起,显示出二者间不存在遗传分化;4)非洲一年生野生种O. barthii是非洲栽培稻O. glaberrima的祖先,而非洲多年生野生种O. longistaminata与O. glaberrima/O. barthii.亲缘关系较远;5)分子钟方法估测A基因组类群约在2百万年前(2.0MYA)开始分化,亚洲栽培稻和非洲栽培稻,以及亚洲栽培稻的两个亚种则分别在0.7和 0.4 MYA左右开始分化。此外,通过核基因内含子序列与其它常用片段如ITS,matK等对比分析表明,进化速率相对较快的核基因内含子序列可以有效地用于近缘类群的系统发育研究。 2. Oryza rufipogon 和O. nivara群体遗传研究及亚洲栽培稻起源 对于亚洲野生类群O. rufipogon和O. nivara是合并为一个种还是处理为两个独立的种一直存在争议。在系统发育研究基础上,我们选取4个核基因内含子或5’-UTR区(Waxy, LHS,CatA和1个未注释基因),对采自整个分布区的群体样品进行了多克隆测序,结果表明:1)检测到O. rufipogon和O. nivara均有较高的核苷酸多态性,4个位点上π值和θw值平均分别为0.011和0.014;2)且二者在遗传上没有明显分化,两个类群在4个核基因位点上均检测到大量共享多态(shared polymorphism),未发现固有差异(fixed difference),表明它们历史上可能属于一个大群体,支持将二者作为种内不同生态型或亚种处理;3)基因谱系树表明亚洲栽培稻的两个亚种indica和japonica分别和不同的O. rufipogon (包括O. nivara)群体聚在一起,进一步从基因谱系角度支持亚洲栽培稻多次起源假说。 3.转座子在群体遗传与系统发育研究中的应用 鉴于目前植物谱系地理学研究中缺乏具有足够信息量的分子标记用于检测种内遗传变异,我们选取3个核基因中的转座子,通过对取自O. rufipogon和O. nivara整个分布区的37份样品的克隆测序,探讨了进化速率快、信息含量丰富的转座子序列在群体遗传上的应用。结果表明:1)无论在物种水平还是群体水平,转座子能检测到比包括内含子在内的其它DNA区域高得多的遗传变异;2)在物种水平上,异交多年生的O. rufipogon和自交一年生的O. nivara多样性均较高,且2个种间相差很小,二者在3个位点上平均核苷酸多样性π值均为0.013,差别主要表现在O. rufipogon杂合位点比例(46.1%)明显高于O. nivara(9.1%),说明交配系统不同并不一定和物种多样性水平相关;3)是否发生转座子序列插入是有价值的系统发育信息,发生在不同染色体上3个基因中的转座子插入进一步证实A基因组基部类群是O. meridionalis;通过叶绿体中3个转座子的插入现象推断了稻族一些四倍体物种,如稻属BC基因组的一些类群的母本来源。
Resumo:
芍药属Paeonia是芍药科Paeoniacea内唯一的一个属。包括大约35个种,间断性的分布于北温带地区。其内三个组分别是牡丹组(sect. Moutan)、北美芍药组(sect. Onaepia)和芍药组(sect. Paeonia)。芍药组是芍药属中最大,也是唯一具有染色体倍性变化的一个组,现有大约25个种。其中,大约半数的种是四倍体(2n=20),主要分布于地中海地区。虽然有证据表明四倍体类群大多为异源起源,但芍药属内一致的核型、相似的形态和重叠的地理分布使得它们的起源和分类一直存在很大的争议。本研究利用了4个细胞核DNA片段(乙醇脱氢酶基因-Adh1和 Adh2;nrDNA的内转录间隔区-ITS;甘油-3磷酸乙酰转移酶基因-GPAT)和4个叶绿体DNA片段(matK基因;基因间隔区trnL-trnF、psbA-trnH和rps16-trnQ)对芍药组的网状进化进行部分重建。并在此基础上,对推测为杂交起源的P. anomala进行了形态学和细胞发生的研究。主要研究结果如下: 1. 芍药组的系统学 利用多个DNA分子标记(cpDNA: matK, rps16-trnQ; nrDNA: ITS, Adh1, Adh2),芍药组的二倍体和四倍体类群的系统发育被部分重建。基于最大简约法、贝叶斯法和最大似然法的系统发育分析表明: (a) 除P. tenuifolia之外,所有地中海地区分布的二倍体类群构成一个单系分支。该支与亚洲分布的二倍体类群以及P. tenuifolia成并系关系。 (b) 核和叶绿体DNA系统发育树的不一致,以及ITS、Adh基因的多态性的分析,表明部分二倍体类群间和四倍体类群间都存在杂交事件。这些类群包括:中国新疆阿勒泰地区分布的二倍体种P. anomala和P. intermedia(杂种个体XJ053);高加索地区分布的二倍体种P. tenuifolia和P. daurica(杂种个体H9933);土耳其分布的四倍体种P. mascula和P. kesrouanensis(杂交个体在两个居群中检测到)。 (c) 不一致的核和叶绿体DNA系统发育树,以及Adh基因表现出的相同多态性模式进一步支持早先的推测,即四倍体类群P. arietina是异源四倍体。同时扩大的数据分析显示P. obovata近缘类群为其母系亲本,P. tenuifolia近缘类群为其父系亲本。此外,形态上具有一定分化的两个亚种P. arietina ssp. arietina和P. arietina ssp. parnassica是多次起源。 (d) 现今地中海分布类群的近缘种参与了四倍体种P. kesrouanensis 和P. coriacea,以及P. wittmanniana和P. mascula的物种形成。依据Adh序列种内的多态性,初步推测P. kesrouanensis 和P. coriacea可能是异源四倍体,其另一个亲本与P. arietina母系亲本近源。而P. wittmanniana和P. mascula可能是同源四倍体。 (e) P. saueri和P. peregrina的两个亲本类群分别与P. tenuifolia和现今地中海分布二倍体种的近缘类群。 (f) Adh1基因序列中近缘的重组类型暗示:四倍体种P. macrophylla和P. banatica很可能是同倍性杂种。 2. P. anomala的杂交起源和细胞发生 P. anomala新疆阿勒泰地区分布的居群核型第一次被报道。该地区分布的类群核型为2A型(核型公式:2n = 2x = 10 = 6m+2sm+2st)。减数分裂的观察统计显示:阿勒泰地区所有检测个体都是臂内倒位杂合子。基于断片大小以及不同个体染色体桥和/或断片出现率的差异,我们发现该类群臂内倒位存在多态性。荧光原位杂交(FISH)证实P. anomala共有8个18S rDNA位点,并且定位了一个倒位片段在3号染色体的短臂上。此外,高频率的棒状二价体和单价体,以及低的同源染色体的配对系数说明该类群同源染色体间存在分化。染色体结构杂合能够导致部分花粉败育,所有被检测个体的花粉败育率约为8.8 – 29.4%。 扩大的居群取样以及多基因(cpDNA: matK, psbA-trnH, rps16-trnQ, trnL-trnF; nrDNA: ITS, Adh1, Adh2, Gpat)的系统发育分析,进一步支持P. anomala杂交起源于P. veitchii 和P. lactiflora的近缘类群。cpDNA片段和核DNA片段(ITS、GPAT)基因树间的不一致,以及P. anomala Adh1和Adh2序列表现出的多态性都支持该类群杂交起源的推测。不过,表型分析显示P. anomala在形态上偏向于P. veitchii。 3. P. obovata Maxim.四倍体类群的起源 与原先基于形态性状的认识不同,P. obovata 四倍体类群并不是一个严格意义上的同源四倍体。它起源于二倍体P. obovata中国和日本分布的两个地理亚种之间的杂交。Adh2基因仅在中国分布二倍体居群的扩增失败支持这一推测。此外,Adh基因系统发育分析显示:间断性分布于中国中部和中国东北部的四倍体类群是独立起源。
Resumo:
植物近缘物种系统发育和物种形成过程一直以来都是植物进化生物学研究中最基本的问题之一,是人们理解自然界物种多样性产生和变化的前提。近缘物种间通常形态相似,遗传和分子水平的分化很小且常受诸如渐渗杂交、谱系分选、种内重组等微观进化事件的影响,导致植物近缘物种间系统发育和物种形成过程研究极为困难。在过去十多年中,生物技术的革新和理论方法的发展极大地推动了进化生物学研究,促进了人们对一些重要模式生物与其近缘种间的系统发育关系和物种分化过程的认识,如人、果蝇、线虫、拟南芥和玉米等。然而,迄今在植物中,许多重要类群及其近缘种的系统发育和物种形成过程研究仍不多见,包括在具有特殊重要性的栽培作物中,如稻属(Oryza L.)。由于属内包含有重要粮食作物水稻,稻属向来都是禾本科内备受关注的一个类群。本研究中,我们通过多基因序列的方法,探讨了稻属C染色体组三个近缘二倍体物种的系统发育和物种形成过程,主要研究结果如下。 为选择适宜的实验策略和保证序列数据的真实性,我们利用不同聚合酶扩增自交的栽培稻Oryza sativa ssp. japonica和异交的O. longistaminata不同类型的基因片段,采用克隆测序的方法,评估聚合酶链式扩增反应(PCR)中产生的非真实变异的状况。我们使用exTaq、exTaq和Pfu混和酶和PfuUltraTM酶三种不同聚合酶扩增了Adh1、GPA1和Waxy三个基因片段。在检测到的非真实变异中,PCR 错误的类型主要为单碱基变异和不同等位基因间重组,其中以单碱基变异为主,且突变类型以转换占绝大多数。比较不同酶扩增错误的结果表明,高保真PfuUltraTM酶对PCR反应错误有显著的改善,在扩增产物的单克隆中几乎检测不到PCR噪音,错误率仅为0.0001%,而exTaq和混和酶的错误率分别为0.096%和0.073%。从不同物种比较结果来看,exTaq酶和Pfu酶混用时在自交的O. sativa ssp. japonica内对PCR错误也表现明显的改善,但在异交的O. longistaminata中改善效应不太明显。在三个不同基因位点上,PCR扩增错误出现频率随扩增区域增长而变大。在PfuUltraTM酶的扩增产物中发现重组最少,exTaq和混和酶重组较多,且混和酶对重组改善效果不明显。基于不同聚合酶扩增错误对比研究结果,我们认为,由于能保证序列变异的真实性且不遗漏等位基因,核基因的克隆测序较宜于分离杂合个体中不同的等位基因。 基于随机挑取4个叶绿体和10个核基因位点,利用12份Oryza officinalis、8份O. eichingeri和4份O. rhizomatis材料,对稻属C染色体组三个近缘二倍体物种的系统发育关系作了深入分析。利用不同的系统发育分析方法对单基因位点序列和合并序列数据作了分析,结果表明,稻属C染色体组三个近缘种间呈多歧分支。因此,三个二倍体C染色体组物种可能经快速辐射分化形成。在不同核基因和叶绿体基因的系统发育树中各分支枝长均很短,也表明C染色体组的三个物种可能在较短时期内分化出。不同基因间拓扑结构不一致主要受谱系随机分选的影响。此外,C染色体组不同物种间的种间渐渗和不同等位基因重组对系统发育树的冲突也有影响。值得注意的是,C染色体组三个物种的辐射分化不排除由于相邻两次物种形成事件间隔时间太近、目前数据量不够而无法分辨的可能。在本研究中,我们发现,对于系统发育重建困难的类群,利用等位基因构建物种谱系树有助于挖掘不同基因间结果不一致的因素。 基于10个随机选取的核基因序列数据,利用物种水平的取样方式和群体遗传学分析方法,我们研究了稻属C染色体组三个近缘物种O. officinalis、O. eichingeri和O. rhizomatis的核苷酸多态性,并根据多态性水平和式样,推测了三个近缘种分化的历史。结果表明,在C染色体组的三个近缘种中,仅分布于斯里兰卡的O. rhizomatis的核苷酸多态性水平相对最低(θsil = 0.0038),而间断分布于非洲和斯里兰卡的O. eichingeri最高(θsil = 0.0057)。与被子植物其他类群相比,稻属C染色体组三个物种的核苷酸多态性水平显得较低,O. eichingeri的核苷酸多态性仅约为玉米及其近缘野生种的23-46%和拟南芥的35%。C染色体组内三个野生种相对较低的核苷酸多态性水平可能起因于其较小的祖先有效群体。物种形成模型分析表明,O. officinalis和其近缘种从最近共同祖先分化开后可能经历了居群缩减的历史,且自最近共同祖先分开后,三个物种彼此间并无显著的基因交流。基于分子钟粗略估算了C染色体三个物种分化时间,结果表明,三个物种彼此在很短的时期内分开,约0.63-0.68 Myr。同时,O. eichingeri在非洲和斯里兰卡两个地理宗的分异时间约为0.37 Myr,且推测斯里兰卡的O. eichingeri主要由西非经长距离扩散传播到斯里兰卡。
Resumo:
牡丹在中国被称作“花中之王”。我国不仅是全部野生牡丹的原产地,也是栽培牡丹最早的驯化地。野生牡丹共有8个种,分布于云南、四川、湖北、甘肃、陕西、山西、安徽、河南和西藏等9省区,因其具有很大的观赏和药用价值,而在中国和世界温带地区广泛栽培。本研究利用形态特征和4个核基因片段(三个Adh 基因和GPAT基因片断)的核苷酸序列变异对牡丹组的种间系统发育关系进行了分析,并对我国栽培牡丹四个品种群的101个代表品种的可能祖先进行了形态学鉴定和分子诊断标记研究。在此基础上,利用核编码叶绿体表达的GPAT基因的(大内含子)部分序列和叶绿体基因组的trnS – trnG 和 rpS16 – trnQ两个基因间隔区的DNA序列变异重建了栽培牡丹37个代表品种和26个野生居群间的谱系关系。结果表明:(1)GPAT基因树是迄今得到的分辨率最好,并具有很高自展值支持的牡丹组种间系统发育关系树;(2)GPAT基因树和形态学证据一致支持银屏牡丹(P. suffruticosa ssp. yinpingmudan), 凤丹(P. ostii), 紫斑牡丹(P. rockii), 卵叶牡丹(P. qiui), 和矮牡丹 (P. jishanensis) 参与了栽培牡丹的起源;(3)叶绿体DNA单倍型网络树(network)进一步证实上述5个祖先类群的4个(矮牡丹除外)可能参与了栽培牡丹的母系起源。37个品种的GPAT基因谱系和叶绿体DNA单倍型网络树一致表明银屏牡丹是栽培牡丹最主要的祖先,其次是紫斑牡丹、凤丹、和卵叶牡丹;(4)我们的分子证据不支持形态学证据关于矮牡丹是栽培牡丹最主要的野生祖先的推测;(5)形态学和分子诊断标记证据表明,101个品种中有65.35 % 的品种具有两个以上野生种的特征,18.81 % 品种同时具有 Eco R I (+) 和 InDel51(+)物种特异分子标记。对37个品种的GPAT基因谱系和叶绿体DNA谱系比较发现,其中35个可能是杂种起源。另外,对7个古代牡丹品种(据文献记载)的GPAT基因的不同克隆类型进行测序和谱系分析,结果表明其中4 个为杂种起源。上述证据充分表明杂交和(或)渗入杂交在牡栽培牡丹的起源和进化中发挥了重要作用。根据本研究的结果,结合现有的形态学数据、考古记录,以及有关牡丹栽培和驯化历史的记载,我们对栽培牡丹的起源和驯化历史总结如下。牡丹的栽培迄今有1,600 – 2,000年,栽培牡丹最迟起源于1,500年前。最初通过驯化和对突变的选择获得原始品种。由于牡丹品种可以通过无性和(或)有性方式进行繁殖,其后新的品种通过如下方式产生:(1)对突变的选择,(2)对栽培类型和野生种之间或栽培类型之间杂交和(或)渗入杂交产生的实生苗的选择。由于绝大部分(如果不是全部)早期的原始品种已绝灭,现有栽培牡丹是起源于各种人工和自然进化力共同作用的结果,其中包括多次驯化、人工选择、突变、杂交和渗入杂交等。据作者所知,栽培牡丹的这种 ‘compilospecies’ 起源和驯化模式是目前已研究过的主要栽培作物中未见报道的。 因此,本研究不仅为栽培牡丹的多系起源和驯化历史提供了可信的分子证据,同时也为利用单拷贝基因的内含子序列构建栽培作物及其近缘野生祖先间的种系发生关系提供了成功的例子。另外,本研究也为同时利用核和叶绿体基因组的非编码DNA序列研究杂交在栽培作物的起源和进化的中作用提供了成功的例子。