32 resultados para Chemotherapeutic agents
Resumo:
比较了N-乙酰半胱氨酸(NAC)及乙酰左旋肉毒碱(ALCAR)对12C6+离子照射小鼠的损伤效应,并探讨了其可能的作用机制。利用4Gy剂量的12C6+离子束对预先给予NAC(100mg/kg)和ALCAR(100mg/kg)保护的昆明小鼠进行单次全身照射。随后检测肝组织中总抗氧化能力(TAC)、DNA单链断裂和细胞凋亡率。结果显示,与照射对照组相比,提前给予NAC和ALCAR均极显著地增强了肝组织的抗氧化能力(P<0.001),减轻了12C6+离子导致的肝组织中DNA断裂(P<0.001)和细胞凋亡(P<0.001)。此外,还发现ALCAR组抗重离子辐照损伤的能力显著地高于NAC组(P<0.05)。实验结果提示了NAC和ALCAR可通过抵御组织内的氧化胁迫,阻止DNA链的断裂和细胞的凋亡,实现对C离子辐照损伤的保护效应。而且ALCAR比NAC可能更适合成为有潜力、有希望的抗C重离子辐射药物。
Resumo:
In this paper, we report a novel approach using peptide CALNN and its derivative CALNNGGRRRRRRRR (CALNNR(8)) to functionalize gold nanoparticles for intracellular component targeting. The translocation is effected by the nanoparticle diameter and CALNNR8 surface coverage. The intracellular distributions of the complexes are change from the cellular nucleus to the endoplasmic reticulum by increasing the density of CALNNR8 at a constant nanoparticle diameter. Additionally, increasing the nanoparticle diameter at a constant density of CALNNR8 leads to less cellular internalization.
Resumo:
Arabinogalactan derivatives conjugated with gad olinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A(2)) or hexylamine (Gd-DTPA-CMAG-A(6)) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), C-13 nuclear magnetic resonance (C-13 NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES).
Resumo:
Two mono-substituted manganese polyoxometalates, K6MnSiW11O39 (MnSiW11) and K8MnP2W17O61 (MnP2W17), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T-1-relaxivities of 12.1 mM(-1) s(-1) for MnSiW11 and 4.7 mM(-1) s(-1) for MnP2W17 (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW11 and MnP2W17 to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0 +/- 4.9% for the liver during the whole imaging period (90 min) and by 67.2 +/- 5.3% for kidney within 20-70 min after injection at 40 +/- 3 mu mol kg(-1) dose for MnSiW11. MnP2W17 induced 71.5 +/- 15.1%. enhancement for the liver in 10-45 min range and 73.1 +/- 3.2% enhancement for kidney within 5-40 min after injection at 39 +/- 3 mu mol kg(-1) dose. In vitro and in vivo study showed MnSiW11 and MnP2W17 being favorable candidates as the tissue-specific contrast agents for MRI.
Resumo:
The two gadolinium (Gd) polyoxometalates, K-15[Gd(BW11O39)(2)] [Gd(BW11)(2)] and K-17[Gd(CuW11O39)(2)] [Gd(CuW11)(2)] have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific magnetic resonance imaging (MRI) contrast agents. T-1 relaxivities of 17.12 mM(-1) . s(-1) for Gd(BW11)(2) and 19.95 mM(-1) . s(-1) for Gd(CuW11)(2) (400MHz, 25 degrees C) were much higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin solutions were also reported. After administration of Gd(BW11)(2) and Gd(CuW11)(2) to Wistar rats, MRI showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 37.63 +/- 3.45% for the liver during the whole imaging period (100 min) and by 61.47 +/- 10.03% for kidney within 5-40 min after injection at 40 +/- 1-mu mol . kg(-1) dose for Gd(CuW11)(2), and Gd(BW11)(2) induced 50.44 +/- 3.51% enhancement in the liver in 5-50-min range and 61.47 +/- 10.03% enhancement for kidney within 5-40 min after injection at 39 +/- 4 mu mol . kg(-1) dose. In vitro and in vivo study showed that Gd(BW11)(2) and Gd(CuW11)(2) are favorable candidates as tissue-specific contrast agents for MRI.
Resumo:
Two gadolinium-sandwiched complexes with tungstosilicates, K-13[Gd(SiW11O39)(2)] (Gd(SiW11)(2)) and K11H6[Gd2O3(SiW9O34)(2)] (Gd-3(SiW9)(2)), have been investigated by in vitro and in vivo experiments as potential contrast agents for magnetic resonance imaging (MRI). T-1-relaxivity of Gd(SiW11)(2)was 6.59 mM(-1) . s(-1) in aqueous solution and 6.85 mM(-1) . s(-1) in 0.725 mmol . L-1 bovine serum albumin solution at 25degreesC and 9.39 T, respectively. The corresponding T-1-relaxivity of Gd-3(SiW9)(2) was 12.6 and 19.3 mM(-1) . s(-1) per Gd, respectively. MRI for Sprague-Dawley rats showed longer and more remarkable enhancement in rat liver after i.v. injection of these two complexes: 39.4 +/- 3.9% and 57.4 +/- 11.6% within the first 30 min after injection, 31.2 +/- 2.6% and 39.9 +/- 7.6% in the next 60 min for Gd(SiW11)(2) and Gd-3(SiW9)(2) at doses of 0.081 and 0.084 mmol Gd/kg, respectively. Our preliminary in vitro and in vivo study indicates that Gd(SiW11)(2) and Gd-3(SiW9)(2) are favorable candidates for hepatic contrast agents for MRI. However, the two complexes exhibit higher acute toxicity and need to be modified and studied further before clinical use.
Resumo:
Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D2O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.
Resumo:
Two gadolinium polyoxometalates, Gd2P2W18O62 and K-15[(GdO)(3)(PW9O34)(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T-1-relaxivities of 28.4 mM(-1)-s(-1) for Gd2P2W18O62 and 11.2 mM(-1)-s(-1) for K-15[(GdO)(3)(PW9O34)(2)] (400 MHz, 25 degreesC) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K-15[(GdO)(3)(PW9O34)(2)] was demonstrated. In vivo and in vitro assay showed that K-15[(GdO)(3)(PW9O34)(2)] is a promising liver-specific MRI contrast agent. However, Gd2P2W18O62 did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.
Resumo:
The effect of nucleating agents on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (T-c) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187degreesC. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface.
Resumo:
The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximate to 20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.
Resumo:
Eighteen novel triazole compounds containing thioamide were designed and synthesized. Their structures were confirmed by elemental analysis, H-1 NMR, IR, and MS. The title compounds exhibited certain antifungal activity. And the geometry structures of the title compounds were optimized by means of the density functional theory (DFT) method at B3LYP/6-31G* level. The quantitative structure-activity relationship (QSAR) of the title compounds was systematically investigated. A correlative equation between FA and DELH, V was well established by using the multiple linear regression (MLR). (c) 2006 Elsevier Ltd. All rights reserved.