44 resultados para Carbon sequestration - Pasture - Grazing management
Resumo:
Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Above-ground biomass at G-sites was 21-35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68-82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.
Resumo:
Alpine meadow and shrub are the main pasture types on the Tibetan Plateau, and they cover about 35% of the total land area. In order to understand the structural and functional aspects of the alpine ecosystem and to promote a sustainable animal production system, the Haibei Alpine Meadow Research Station was established in 1976. A series of intensive studies on ecosystem structure and function, including the energy flow and nutrient cycling of the ecosystem, were the main tasks during the first 10 years. Meanwhile, studies with 5 different grazing intensities on both summer and winter pasture have been conducted. In the early years of the 1990s, the research station started to focus its research work on global warming, biodiversity and sustainable animal production systems in pastoral areas. Various methods for improving degraded pasturelands have been developed in the region.
Effects of grasslands conversion to croplands on soil organic carbon in the temperate Inner Mongolia
Resumo:
There was a positive correlation between the concentration of organic carbon and potential respiration as measured by carbon dioxide evolution (R-2 = 0.923) and oxygen consumption (R-2 = 0.986) in soil samples collected from the bottoms of drained ponds. This finding supports the frequent use of organic carbon analysis as an indicator of sediment respiration rate under optimal conditions in commercial aquaculture facilities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Both Fourier transform infrared (FTIR) grazing incidence reflectivity and FTIR transmission methods have been used to study GaN films grown on alpha-Al2O3 (0001) substrates by atmospheric pressure metal-organic chemical vapor deposition and low pressure metal-organic chemical vapor deposition. The results show that in the frequency range from 400 to 3500 cm(-1) the signal-to-noise ratio of the FTIR grazing incidence measurement is far higher than that of the FTIR transmission measurement. Some new vibrational structures appearing in the former measurement have been discussed. The features around 1460 and 1300 cm(-1) are tentatively assigned to scissoring and wagging local vibrational modes of CH2 in GaN, respectively. (C) 1999 American Institute of Physics. [S0021-8979(99)06509-3].
Resumo:
This paper is intended to determine the appropriate conditions for replacing CH4 from NGH with CO2. By analyzing the hydration equilibrium graphs and geotherms, the HSZs of NGH and CO2 hydrate, both in permafrost and under deep sea, were determined. Based on the above analysis and experimental results, it is found that to replace CH4 from NGH with gaseous CO2, the appropriate experimental condition should be in the area surrounded by four curves: the geotherm, (H-V)(CO2), (L-V)(CO2) and (H-V)(CH4), and to replace CH4 from NGH with liquid CO2, the condition should be in the area surrounded by three curves: (L-V)(CO2), (H-L)(CO2) and (H-V)CH4. For conditions in other areas, either CO2 can not form a hydrate or CH4 can release little from its hydrate, which are not desirable results.
Resumo:
海拔梯度造成的环境异质性,如崎岖的地形、复杂的植被结构以及花期延迟等可能会极大地影响到物种的形态和遗传变异格局。理解物种形态和遗传变异的海拔格局对于物种多样性的管理和保护是非常重要的。尽管植物群体遗传学是一个飞速发展的研究领域,然而与海拔相关的形态变异、遗传变异及群体间遗传差异的研究却很少。到目前为止,还不清楚遗传变异与海拔之间是否必然的相关性。 川滇高山栎是一种重要的生态和经济型树种,广泛分布于中国西南的四川、西藏、贵州和云南省的高海拔地区,在保持水土、调节气候方面起着十分重要的作用。尽管主要受阳光限制而仅分布于阳坡,但其海拔梯度范围较大,表明川滇高山栎对不同的环境具有很强的适应性。本文通过叶型及生理响应、微卫星分子标记和扩增性片段长度多态性方法,试图探索川滇高山栎叶沿海拔梯度的形态和生理响应及其沿海拔梯度的遗传变异格局,为川滇高山栎的保护和利用提供进一步的遗传学理论依据和技术指导。 对叶形、含氮量及碳同位素的试验结果表明,平均比叶面积、气孔密度、气孔长度和气孔指数等气孔参数随海拔的升高呈非线性变化。在海拔大于2800 m时,川滇高山栎的比叶面积、气孔长度和气孔指数都随海拔升高而降低,但是在海拔小于2800 m时,这些指标都随海拔的升高而增大。相对而言,单位叶面积的含氮量和碳同位素则表现出相反的变化模式。另外,比叶面积是决定碳同位素沿海拔梯度变化的最重要参数。本研究结果表明,海拔2800 m附近是川滇高山栎生长和发育的最适地带,在这里生长的植物叶片厚度更薄、气孔更大、叶碳同位素值更小。 利用六对微卫星引物对五个不同海拔川滇高山栎群体遗传多样性进行研究,结果表明,群体内表现出较高的遗传多样性,平均每位点等位基因数11.33个,平均期望杂合度达0.820。群体间差异较小,分化仅为6.6%。聚类分析也并没有显示出明显的海拔格局。然而低频率等位基因却与海拔呈显著性正相关(R2=0.97, P < 0.01),表明在高海拔处,川滇高山栎以更多的稀有基因来适应恶劣的环境条件。本试验结果表明由海拔梯度形成的选择性压力对川滇高山栎群体的遗传变异影响并不明显。 为了进一步探讨川滇高山栎群体遗传变异与海拔之间的相互关系,我们还对其进行了扩增性片段长度多态性分析。结果表明:(1)随海拔的升高(从群体WL2到群体WL5),群体内遗传变异降低,而群体间遗传差异增加;(2)低海拔群体WL1表现出最低的遗传变异性(HE = 0.181),同时与其余四个群体间呈现出最大的遗传差异性(平均FST = 0.0596);(3)在除去低海拔群体WL1后,Mantel检测表明群体间遗传距离与海拔距离之间表现出正相关性。另外,研究结果还表明,遗传变异受生境条件(过度的湿热环境)及人为干扰(火烧、砍伐和放牧)的影响,这一点至少在低海拔群体WL1上发生了作用。 通过叶形态、生理及DNA分子水平的研究,结果表明叶形态特征和碳同位素与海拔紧密相关,与海拔之间呈非线性变化,海拔2,800 m附近是川滇高山栎生长和发育的最适地带。海拔梯度在一定程度上会影响到川滇高山栎群体的遗传变异结构,但在这样一个狭窄的地理分布区域里,这种影响并不足以导致群体间较大的遗传分化。同时生境条件及人为干扰也是影响遗传变异的限制性因子,不容忽视。 Altitudinal gradients impose heterogeneous environmental conditions, such as rugged topography, a complex pattern of vegetation and flowering delay, and they likely furthermore markedly affect the morphological and genetic variation pattern of a species. Understanding altitudinal pattern of morphological and genetic variation at a species is important for the management and conservation of species diversity. Although plant population genetics is a fast growing field of research, there are only few recent investigations, which analyzed the genetic differentiation and changes of intra-population variation along altitudinal gradients. At present, it is still unclear whether there are some common patterns of morphological and genetic variation with altitude. Quercus aquifolioides Rehder & E.H. Wilson, which is an important ecological and economical endemic woody plant species, is widely distributed in the Yunnan and Sichuan provinces, Southwest China. Its large range of habitat across different altitudes implies strong adaptation to different environments, although it is mainly restricted to sunny, south facing slopes. It plays a very important role in preventing soil erosion, soil water loss and regulating climate, as well as in retaining ecological stability. In this paper, we tried to understand the altitudinal pattern of morphological and genetic variation along altitudinal gradients through the experiments of leaf morphological and physiological responses, microsatellite analysis and AFLP markers. In leaf morphological and physiological responses experiment, we measured leaf morphology, nitrogen content and carbon isotope composition (as an indicator of water use efficiency) of Q. aquifolioides along an altitudinal gradient. We found that these leaf morphological and physiological responses to altitudinal gradients were non-linear with increasing altitude. Specific leaf area, stomatal length and index increased with increasing altitude below 2,800 m, but decreased with increasing altitude above 2,800 m. In contrast, leaf nitrogen content per unit area and carbon isotope composition showed opposite change patterns. Specific leaf area seemed to be the most important parameter that determined the carbon isotope composition along the altitudinal gradient. Our results suggest that near 2,800 m in altitude could be the optimum zone for growth and development of Q. aquifolioides, and highlight the importance of the influence of altitude in research on plant physiological ecology. Genetic variation and differentiation were investigated among five natural populations of Q. aquifolioides occurring along an altitudinal gradient that varied from 2,000 to 3,600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2=0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS=0.136) and a low level of differentiation among populations (FST=0.066). The result of the cluster analysis demonstrates that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation. To further elucidate genetic variation pattern of Q. aquifolioides populations under sub-alpine environments, genetic variation and differentiation were investigated along altitudinal gradients using AFLP markers. The altitudinal populations with an average altitude interval of 400 m, i.e. WL1, WL2, WL3, WL4 and WL5, correspond to the altitudes 2,000, 2,400, 2,800, 3,200 and 3,600 m, respectively. Our results were as follows: (i) decreasing genetic variation (ranging from 0.253 to 0.210) and increasing genetic differentiation with altitude were obtained from the WL2 to the WL5 population; (ii) the WL1 population showed the lowest genetic variation (HE = 0.181) and the highest genetic differentiation (average FST = 0.0596) with the other four populations; (iii) the positive correlation was obtained using Mantel tests between genetic and altitude distances except for the WL1 population. Our results suggest that altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides populations to some extent. In addition, habitat environments (unfavorable wet and hot conditions) and human disturbances (burning, grazing and felling) were possible influencing factors, especially to the low-altitude WL1 population. The present study shows that there were close correlations between morphological features and carbon isotope composition in our data. This indicates that a coordinated plant response modified these parameters simultaneously across different altitudes. Around 2,800 m altitude there seems to be an optimum zone for growth and development of Q. aquifolioides, as indicated by thinner leaves, larger stomata and more negative d13C values. All available evidence indicates altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides to some extent. Decreasing genetic variation and increasing genetic differentiation with altitude was obtained except for the WL1 population. And the environment of habitats and human disturbances were also contributing factors, which impact genetic variation pattern, especially to the low-altitude WL1 population.
Resumo:
本研究针对川西北高山草甸缺乏科学管理,过度放牧导致草场退化,并由此引发的一系列生态环境问题,选取红原县瓦切乡1996 年草地承包后形成的四个放牧强度草场,即不放牧、轻度(1.2 头牦牛hm-1)、中度(2.0 头牦牛hm-1)和重度放牧(2.9 头牦牛hm-1),作为研究对象,研究了不同放牧强度对草地植物-土壤系统中碳、氮这两个最基本物质的分布格局和循环过程的影响,并探讨了放牧干扰下高山草甸生态系统的管理。 1.放牧对草地植物群落物种组成,尤其是优势种,产生了明显的影响。不放牧、轻度、中度和重度放牧草地群落物种数分别为22,23,26,20 种,群落盖度分别是不放牧96.2%>中度93.6%>轻度89.7%>重度73.6%。随放牧强度的增加, 原植物群落中的优势种垂穗鹅冠草( Roegneria nutans )、发草(Deschampsia caespitosa)和垂穗披碱草(Elymus nutans)等禾草逐渐被莎草科的川嵩草(Kobresia setchwanensis)和高山嵩草(Kobresia pygmaea)所取代成为优势种。同时,随放牧强度的增加,高原毛茛(Ranunculus brotherusii)、狼毒(Stellera chamaejasme)、鹅绒委陵菜(Potentilla anserina)和车前(Plantagodepressa)等杂类草的数量也随之增加。 2.生长季6~9 月份,草地植物地上和地下生物量(0~30cm)都是从6 月份开始增长,8 月份达到最高值,9 月份开始下降。每个月份,通常地上生物量以不放牧为最高,重度放牧总是显著小于不放牧;地下生物量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总生物量平均值分别是1543、1622、2295 和2449 g m-2,但随放牧强度的增加越来越来多的生物量被分配到了地下部分,地下生物量占总生物量比例的大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%。生物量这种变化主要是由于放牧使得群落优势种发生改变而引起的,其分配比例的变化体现了草地植物对放牧干扰的适应策略。 3.植物碳氮贮量的季节变化类似与生物量的变化。每个月份,不同放牧强度间植物地上碳氮的贮量有所不同,一般重度放牧会显著减少植物地上碳氮贮量。植物根系(0~30cm)碳氮贮量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总碳平均值分别是547、586、847 和909 g m-2,根系碳贮量占植物总碳的比例大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%;放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总氮平均值分别是17、17、23 和26 g m-2,根系氮贮量占植物总氮的比例大小顺序分别是重度79%>轻度71%>中度70%>不放牧65%。 4. 土壤有机碳贮量(0~30cm)的季节变化表现为7 月份略有下降,8 月开始增加,9 月份达到的最大值。土壤氮贮量的季节变化表现为随季节的推移逐渐增加的趋势。增加的放牧强度不同程度的增加土壤有机碳氮的贮量。不放牧、轻度、中度和重度放牧6~9 月份4 个月的土壤有机碳贮量的平均值分别是9.72、10.36、10.62 和11.74 kg m-2,土壤氮贮量分别为1.45、1.56、1.66 和1.83 kg m-2。土壤中有机碳(氮)的贮量都占到了植物-土壤系统有机碳(氮)的90%以上,但不同放牧强度之间的差异不明显。 5. 土壤氮的总硝化和反硝化,温室气体N2O 和CO2 的释放率的季节变化表现为从6 月份开始增加,7 月份达到最大值,8 月份开始下降,9 月份降为最小值。增加的放牧强度趋向于增加土壤氮的总硝化和反硝化作用,温室气体N2O和CO2 的释放率,通常情况下,中度放牧和重度放牧显著地加强了这些过程。 6.垂穗鹅冠草(Roegneria nutans)和川嵩草(Kobresia setchwanensis)凋落物在不同放牧强度下经过1 年的分解,两种凋落物的失重率及其碳氮的损失率3都随放牧增加表现为增加的趋势。在同一放牧强度下,川嵩草凋落物的失重率和碳氮的损失率都高于垂穗鹅冠草凋落物。 7. 尽管重度放牧显著增加了土壤碳氮的贮量,但同时也显著降低了植被群落盖度,降低了植物地上生物量,因此,久而久之会减少植物向土壤中的碳氮归还率;与不放牧和轻度放牧相比,重度放牧又显著增加了土壤CO2 和NO2 的排放量,这是草地生态系统碳氮损失的重要途径。由此可见,对于这些地处青藏高原的非常脆弱的高山草甸生态系统,长期重度放牧不仅导致植物生产力降低,而且将导致草地生态系统退化,甚至造成土壤中碳氮含量减少。 Long-term overgrazing has resulted in considerable deterioration in alpine meadowof the northwest Sichan Province. In order to explore management strategies for thesustainability of these alpine meadows, we selected four grasslands with differentgrazing intensity (no grazing-NG: 0, light grazing-LG: 1.2, moderate grazing-MG: 2.0,and heavy grazing-HG: 2.9 yaks ha-1) to evaluate carbon, nitrogen pools and cyclingprocesses within the plant-soil system in Waqie Village, Hongyuan County, Sichuan Province. 1. Grazing obviously changed the plant species composition, especially ondominant plant species. Total number of species is 22, 23, 26, and 20 for NG, LG, MGand HG, respectively. Vegetation coverage under different grazing intensity ranked inthe order of 96.2% for HG>93.6% for MG>89.7% for LG>73.6% for NG. Thedominator of HG community shifted from grasses-Roegneria nutans andDeschampsia caespitosa dominated in the NG and LG sites into sedges-Kobresiapygmaea and K. setchwanensis. At the same time, with the increase of grazingintensity, the numbers of forbs, such as Ranunculus brotherusii, Stellera chamaejasme,Potentilla anserine and Plantago depressa, increased with grazing intensity. 2. Over the growing season, aboveground and belowground biomass showed a 5single peak pattern with the highest biomass in August. For each month, abovegroundbiomass usually was the highest in the NG site and lowest in the HG site.Belowground biomass showed a trend of increase as grazing intensity increased and itwas significantly higher in the HG and MG site than in the NG and LG sites. Totalplant biomass averaged over the growing season is 1543, 1622, 2295 and 2449 g m-2for NG, LG, MG and HG, respectively. The proportion of biomass to total plantbiomass for NG, LG, MG and HG is 88%, 82%, 76% and 69%, respectively. Higherallocation ratio for is an adaptive response of plant to grazing. 3. Carbon and nitrogen storage in plant components followed the similar seasonalpatterns as their biomass under different grazing intensities. Generally, heavy grazingsignificantly decreases aboveground biomass carbon and nitrogen compared to nograzing. Carbon and nitrogen storage in root tended to increase as grazing increasedand they are significantly higher in the HG and MG sites compared to the LG and NGsite. Total Carbon storage in plant system averaged over the growing season is 547,586, 847 and 909 g m-2 for NG, LG, MG and HG, respectively, while 17, 17, 23 and 26g m-2 for nitrogen. The proportion of carbon storage in root to total plant carbon forNG, LG, MG and HG is 88%, 82%, 76%, 69%, respectively, while 65%, 71%, 70%and 79% for nitrogen. 4. Carbon storage in soil (0-30cm) decreased slightly in July, then increased inAugust and peaked in September. Nitrogen storage in soil tended to increase withseason and grazing intensity. Total Carbon storage in soil averaged over the growingseason is 9.72, 10.36, 10.62 and11.74 kg m-2 for NG, LG, MG and HG, respectively,while 1.45, 1.56, 1.66 and 1.83 for nitrogen. The proportion of carbon (nitrogen)storage in soil to plant-soil system carbon (nitrogen) storage for NG, LG, MG and HGis more than 90%, which is not markedly different among different grazing intensities. 5. Gross nitrification, denitrification, CO2 and N2O flux rates in soil increasedfrom June to July and then declined until September, all of which tended to increasewith the increase of grazing intensity. Generally, heavy and moderate grazing intensitysignificantly enhanced these process compared to no and light grazing intensity. 6. After decomposing in situ for a year, relative weight, carbon and nitrogen loss in the litter of Roegneria nutans and Kobresia setchwanensis tended to increase asgrazing intensity increased. Under the same grazing intensity, relative weight, carbonand nitrogen loss in the litter of Kobresia setchwanensis were higher than these in thelitter of Roegneria nutans. 7. Although heavy grazing intensity resulted in higher levels of carbon andnitrogen in plant and soil, it decreased vegetation coverage and aboveground biomass,which are undesirable for livestock production and sustainable grassland development.What is more, heavy grazing could also introduce potential carbon and nitrogen lossvia increasing CO2 and N2O emission into the atmosphere. Grazing at moderateintensity resulted in a plant community dominated by forage grasses with highaboveground biomass productivity and N content. The alpine meadow ecosystems inTibetan Plateau are very fragile and evolve under increasing grazing intensity by largeherbivores; therefore, deterioration of the plant-soil system, and possible declines insoil C and N, are potential without proper management in the future.