33 resultados para Carbohydrates, acid soluble
Resumo:
An anionic, phosphonate-functionalized polyfluorene, i.e., poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPNa), has been synthesized by copolymerization of phosphonic acid-substituted 2,7-dibromofluorene and phenyldiboronic ester via direct Suzuki polycondensation reaction in DMF/water. Polymer PFPNa is highly soluble and emissive in water with a solubility of 60 mg/mL and a photoluminescence quantum yield of 75%. The absorption and fluorescence spectra of PFPNa are strongly dependent on pH value owing to the partial protonation of phosphate groups and the aggregation of the polymer chains.
Resumo:
A novel water-soluble electroactive polymer, aniline pentamer crosslinked chitosan (Pentamer-c-Chi), was prepared by condensation polymerization of the terminal carboxyl groups in aniline pentamer with the amino side groups in chitosan in aqueous solution. The carboxyl groups were activated by N-hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (I)CC). The electrochemical behavior of aniline pentamer in this kind of crosslinked polymer was studied in acidic aqueous solution by means of cyclic voltammetry (CV), UV-vis, and electron spin resonance (ESR) spectroscopy.
Resumo:
We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.
Resumo:
A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.
Resumo:
The complex copolymer of hyperbranched polyethylenimine (PEI) with hydrophobic poly(gamma-benzyl L-glutamate) segment (PBLG) at their chain ends was synthesized. This water-soluble copolymer PEI-PBLG (PP) was characterized for DNA complexation (gel retardation assay, particle size, DNA release and DNase I protection), cell viability and in vitro transfection efficiency. The experiments showed that PP can effectively condense pDNA into particles. Size measurement of the complexes particles indicated that PP/DNA tended to form smaller nanoparticles than those of PEI/DNA, which was caused by the hydrophobic PBLG segments compressing the PP/DNA complex particles in aqueous solution. The representative average size of PP/DNA complex prepared using plasmid DNA (pEGFP-N1, pDNA) was about 96 nm. The condensed pDNA in the PP/pDNA complexes was significantly protected from enzymatic degradation by DNase1. Cytotoxicity studies by MTT colorimetric assays suggested that the PP had much lower toxicity than PEI. The in vitro transfection efficiency of PP/pDNA complexes improved a lot in HeLa cells, Vero cells and 293T cells as compared to that of PEI25K by the expression of Green Fluorescent Protein (GFP) as determined by flow cytometry. Thus, the water-soluble PP copolymer showed considerable potential as carriers for gene delivery.
Resumo:
A novel conducting polymer poly(phenylene sulfide-tetraaniline) (PPSTEA), with tetraaniline (TA) and phenylene sulfide (PS) segments in its repeat unit, has been synthesized through an acid-induced polycondensation reaction of 4-methylsulfinylphenyl-capped tetraaniline. The new polymer, which represents the first soluble conducting polyaniline analogue with well-defined structure, has high molecular weight, good solubility in common solvents, and good film-forming properties. Its electrical property is analogous to polyaniline. The conductivity of preliminarily, protonic-doping PPSTEA is up to 10 degrees S/cm. This synthetic strategy appears to be general for developing novel well-defined polyaniline analogue containing much longer fixed conjugation length.
Resumo:
Polyaniline (PAn) was doped with phosphonic acid containing hydrophilic tails. The solubility of the doped PAn in water was controlled by changing the length of hydrophilic chain in the dopant. When poly(ethylene glycol) monomethyl ether (PEGME) with molecular weight M-w = 550 was used as the hydrophilic chain of the dopant, the doped PAn was entirely soluble in water. The film cast from aqueous solution showed good electrochemical redox reversibility, Aqueous solution blending of PAn with poly(ethylene glycol) (PEG, M-w = 20 000) and poly(N-vinyl pyrrolidone) (PVP, M-w = 360 000) was achieved. Percolation threshold of the composite film was lower than 3 wt.%. Electrical conductivity of the composite film was in the range of 10(-1)-10(-5) S cm(-1), depending on molecular weight of the acid and the content of PAn in the composite. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A water-soluble endohedral metallofullerol, Pr@C82Om(OH)(n)(m approximate to 10 and n approximate to 10), was successfully synthesized through the reaction of a pure endohedral metallofullerene, Pr@C-82, with a concentrated nitric acid and a subsequent hydrolysis process. The formation of endohedral metallofullerols Pr@C82Om(OH)(n) is thought to involve a NO2 radical formation step, in much the same way as the reaction of empty fullerenes. FT-IR, XPS, and LD-TOF MS techniques were employed to characterize the structure of the endohedral metallofullerol from the above reaction.
Resumo:
Physical properties of thin films of soluble and insoluble aromatic polyimides were compared by d.s.c., u.v.-visible and fluorescence spectroscopy, and prism coupler technique. D.s.c. results showed that the thermal properties of insoluble polyimides are superior to those of soluble ones, owing to the specific molecular interactions of insoluble polyimides, revealed by fluorescence spectroscopy. However, the specific molecular interactions sacrifice the transparency in their thin films, shown by u.v.-visible transmission spectra. Negative birefringence of thin films, not only for soluble polimides but also for polyamic acids of insoluble polyimides, was confirmed by prism coupler, while thin films of insoluble polyimides thermally imidized lack high levels of negative birefringence. It is regarded that thin films of insoluble polyimides thermally imidized are likely to be isotropic because of molecular relaxation above their glass transition temperatures (T-g) in the course of thermal imidization, according to Flory's principle. On the contrary, thin films of insoluble poyimide chemically imidized keep the same levels of negative birefringence as those of the relevant polyamic acid thin films. Judging from the opposite cases, it is recognized that molecular relaxation above T-g weakens the optical anisotropy of polyimide thin films. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel organic-inorganic composite film was formed by attaching Keegin-type heteropolyanion, SiW12O404- (devoted briefly as SiW12), on a glassy carbon electrode derivatized by 4-aminophenyl group. The composite film has an ionic bonding character between SiW12 and the surface amino group, which greatly improves the Blm stability and exhibits a more reversible electrochemical behavior. The modified electrode offers an excellent and stable electrocatalytic response for the reduction of nitrite. Possible mechanism was provided for the reaction of nitrite with SiW12O404-/aminophenyl composite film.
Resumo:
Langmuir-Blodgett (LB) monolayers of three kinds of soluble polyimides were prepared with the direct deposition method, The monolayer structures were characterized with W-vis absorption spectroscopy, the wide angle X-ray scattering method and electrochemical techniques. The polyimide molecules in the LB monolayers lie orderly on the substrate surfaces with the orientation in which the dianhydride group is normal to the substrate surface and two carbonyl oxygen groups close to the surface. Therefore, the thickness of the three kinds of polyimide LB monolayers are the same because it depends on the distance between the two carbonyl oxygen groups in the same ring. The area of monomeric units are dependent on the length of the diamine group. The model of the molecular packing proposed from the quantomechanical calculation is in good agreement with the experimental results. (C) 1997 Elsevier Science S.A.
Resumo:
Soluble poly (o-toluidine) (POT), poly(o-anisidine) (PAs) and poly (o-chloroaniline) (PCAn) were doped with camphorsulfonic acid (CSA). The conductivity and UV-Vis spectra of the CSA-doped POT, PAs and PCAn were studied. These properties were found to be dependent on the solvent used. The cast films from m-cresol solution exhibit more effective doping and higher conductivity.
Resumo:
A method for the specific determination of cobalt based on reversed-phase liquid chromatography with amperometric detection via on-column complex formation has been developed. A water-soluble chelating agent, 1-(2-pyridylazo)-2-naphthol-6-sulphonic acid (PAN-6S), is added to the mobile phase and aqueous cobalt solutions are injected directly into the column to form in situ the cobalt-PAN-6S chelate, which is then separated from other metal PAN-6S chelates and subjected to reductive amperometric detection at a moderate potential of -0.3 V. Because the procedure eliminates the interference of oxygen and depresses the electrochemical reduction of the mobile phase-containing ligand PAN-6S, by virtue of the quasi:reversible electrode process of the cobalt-PAN-6S complex, a low detection limit of 0.06 ng can be readily obtained. Interference effects were examined for sixteen common metal species, and at a 5- to 8000-fold excess by mass no obvious interference was observed. The feasibility of the method as an approach to the specific analysis of cobalt in a hair sample has been demonstrated.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
A novel comb-like amphiphilic polymer, poly (2-acrylamidohexadecylsulfonic acid) (PAMC16S), was synthesized by free radical polymerization of the corresponding amphiphilic monomer in 1,4-dioxane-water mixed solvents. Depending on the ratio of water/dioxane in the solvent, the reaction proceeded by either precipitation polymerization or micellar polymerization. The molecular weight of the polymer obtained under similar conditions decreased and subsequently increased with the increase of water content in the mixed solvent. The polyion nature of PAMC16S was confirmed by viscosity data of ethanolic solutions. In addition, the polymer was characterized by solubility, IR, TG and wide angle X-ray diffraction methods.