16 resultados para Canyon Ferry
Resumo:
A number of proxy records of paleoenvironment using stable isotopes could show the history of past environmental changes. These archives include peat and lake sediments, loess-paleosot sequence, fossil mammals and stalagmite, and so on. The stable isotopic composition of carbonate and organic matter and frequency magnetic susceptibility from Tianshuigou and Yuanlei loess-palesol sequence can be used to give estimates of the paleoenvironmental history of Dali, and even of the whole Chinese Loess Plateau during the last 250ka. Features of the High Temperature and Large Precipitation Event in the Tibet Plateau and its adjacent area during 40~30kaBP had been studied by Professor Shi Y. In this dissertation, its impact on Chinese Loess Plateau has been discussed again. Carbon and oxygen isotopic ratios, magnetic susceptibility and frequency magnetic susceptibility in Tianshuigou and Yuanlei profiles show that the Event in this area is not so stronger as the Tibet Plateau. The carbon isotopic composition of organic matter in Tianshuigou, Yuanlei, dingcun and Jingcun loess-palesol sequences are indicative of major changes in the paleovagetation between terrace and plain of the Chinese Loess Plateau. Water is one of the most important factors adjusting the relative biomass of C4 plant in terrestrial ecosystems. Stable carbon isotope ratio of vertebrate tooth enamel is used increasingly to reconstruct environmental and ecological information modern and ancient ecosystems. The SI3C value of tooth enamel bioapatites can distinguish between browsers and grazers. Data from typical grassland of Inter Mongolia, the Alpine meadow of Qinghai-Tibet Plateau and the Yaluzangbu Great Canyon indicate that diets of mammals could record the relative biomass of C4 plant only in the C4 dominated ecosystem. In a C3 dominated ecosystem, diet of mammals would include more C3 plants than vegetation. According to Professor Cerling, proxy records from North and South America, Africa and Pakistan show that at the end of the Miocene (between 8Ma to 6 Ma) there was a global expansion of CA biomass, probably when atmospheric CO2 levels declined. Thus, "C4 world" and "CO2 starvation" are put forward. In this dissertation, carbon isotopes of fossil tooth such as Equus sanmeniensis and Hipparion chiai from Linxia, China reveal that there is a C3 dominated ecosystem in the late Miocene. Diets of ancient mammals in Linxia are not evidence of global expansion of C4 biomass.