25 resultados para CRITICAL THERMAL LIMITS
Resumo:
The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings vertical bar K vertical bar are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant vertical bar K vertical bar. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 monolayer (ML) to 3 ML. The temperature dependence of the InAs exciton energy and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML, indicating spontaneous formation of quantum dots (QDs). A model, involving exciton recombination and thermal activation and transfer, is proposed to explain the experimental data. In the PL thermal quenching study, the measured thermal activation energies of different samples demonstrate that the InAs wetting layer may act as a barrier for thermionic emission of carriers in high quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to thermally escape from the localized states. (C) 1998 Academic Press Limited.
Resumo:
Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
An extensive study of the one-dimensional two-segment Frenkel-Kontorova FK model reveals a transition from the counterintuitive existence to the ordinary nonexistence of a negative-differential-thermal-resistance NDTR regime, when the system size or the intersegment coupling constant increases to a critical value. A “phase” diagram which depicts the relevant conditions for the exhibition of NDTR was obtained. In the existence of a NDTR regime, the link at the segment interface is weak and therefore the corresponding exhibition of NDTR can be explained in terms of effective phonon-band shifts. In the case where such a regime does not exist, the theory of phonon-band mismatch is not applicable due to sufficiently strong coupling between the FK segments. The findings suggest that the behavior of a thermal transistor will depend critically on the properties of the interface and the system size.
Resumo:
La2Zr2O7 (LZ) and La-2(Zr0.7Ce0.3)(2)O-7 (LZ7C3) as novel candidate materials for thermal barrier coatings (TBCs) were prepared by electron beam-physical vapor deposition (EB-PVD). The adhesive strength of the as-deposited LZ and LZ7C3 coatings were evaluated by transverse scratch test. Meanwhile, the factors affecting the critical load value were also investigated. The critical load value of LZ7C3 coating is larger than that of LZ coating, whereas both values of these two coatings are lower than that of the traditional coating material, i.e. 8 wt% yttria stabilized zirconia (8YSZ). The micro-cracks formed in the scratch channel can partially release the stress in the coating and then enhance the adhesive strength of the coating. The width of the scratch channel and the surface spallation after transverse scratch test are effective factors to evaluate the adhesive strength of LZ and LZ7C3 coatings.
Resumo:
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.