41 resultados para COLORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

LaGaO3:Sm3+, LaGaO3:Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-Ray diffraction, field emission scanning electron microscopy, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. Under excitation with ultraviolet light (250-254 nm), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors mainly show the characteristic broadband emission (from 300 to 600 nm with a maximum around 430 nm) of the LaGaO3 host lattice, accompanied by the weak emission of Sm3+ ((4)G(5/2) -> H-6(5/2), H-6(7/2), H-6(9/2) transitions) and/or Tb3+ (D-5(3,4) -> F-7(6,5,4,3) transitions). However, under excitation by low-voltage electron beams (1-3 kV), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors exhibit exclusively the characteristic emissions of Sm3+ and/or Tb3+ with yellow (Sm3+), blue (Tb3+, with low concentrations) and white (Sm3+ + Tb3+) colors, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, monodisperse spherical zirconia (ZrO2) particles with a narrow size distribution were prepared by the controlled hydrolysis of zirconium butoxide in ethanol, followed by heat treatment in air at low temperature from 300 to 500 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance were used to characterize the samples. The experimental results indicate that the annealed ZrO2 samples exhibit broad, intense visible photoluminescence. The annealing temperature is indispensable for the luminescence of the obtained ZrO2 particles. The emission colors of the ZrO2 samples can be tuned from blue to nearly white to dark orange by varying the annealing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LaInO3:Eu3+ phosphors were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C and pure LaInO3 phase can be obtained at 800 degrees C. The crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that LaInO3:Eu3+ phosphors are composed of fine and spherical grains around 40-80 nm in size. Under the excitation of UV light and low-voltage electron-beams, LaInO3:Eu3+ phosphors show the characteristic emissions of the Eu3+ (D-5(J)-F-7(J) J,J(')=0,1,2,3 transitions). The luminescence colors can be tuned from yellowish warm white to red by changing the doping concentration of Eu3+ to some extent. The corresponding luminescence mechanisms have been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we reported both unlabeled and labeled sensing strategies for Ag(I) ions detection by using the DNA based gold nanoparticles (AuNPs) colorimetric method. In the unlabeled strategy, C-base riched single strand DNA (C-ssDNA) enwinded onto AuNPs to form AuNPs/C-ssDNA complex. In the labeled method, sulfhydryl group modified C-ssDNA (HS-C-ssDNA) was covalently labeled on AuNPs to produce AuNPs-S-C-ssDNA complex. In both strategies, C-ss DNA or HS-C-ssDNA could enhance the AuNPs stability against the salt-induced aggregation. However, the presence of Ag(I) ions in the obtained AuNPs/C-ssDNA or AuNPs-S-C-ssDNA complex would decrease such stability to display purple even blue colors due to the formation of Ag(I) ions mediated C-Ag(I)-C base pairs. Through this phenomenon, Ag(I) ions could be detected qualitatively and quantitatively using both unlabeled and labeled sensing strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform NaLuF(4) nanowires and LuBO(3) microdisks have been successfully prepared by a designed chemical conversion method. The lutetium precursor nanowires were first prepared through a simple hydrothermal process. Subsequently, uniform NaLuF(4) nanowires and LuBO(3) microdisks were synthesized at the expense of the precursor by a hydrothermal conversion process. The whole process was carried out in aqueous condition without any organic solvents, surfactant, or catalyst. The conversion processes from precursor to the final products have been investigated in detail. The as-obtained Eu(3+) and Tb(3+)-doped LuBO(3) microdisks and NaLuF(4) nanowires show strong characteristic red and green emissions under ultraviolet excitation or low-voltage electron beam excitation. Moreover, the luminescence colors of the Eu(3+) and Tb(3+) codoped LuBO(3) samples can be tuned from red, orange, yellow, and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of uniform lanthanide orthoborates LnBO(3) (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates have been successfully prepared by a general and facile conversion method. One-dimensional (ID) lanthanide hydroxides were first prepared through a simple hydrothermal process. Subsequently, uniform LnBO(3) microplates were synthesized at the expense of the ID precursors during a hydrothermal conversion process. The whole process in this method was carried out in aqueous condition without the use of any organic solvents, surfactant, or catalyst. The as-obtained rare earth ions doped GdBO3 and TbBO3 microplates show strong light emissions with different colors coming from different activator ions under ultraviolet excitation or low-voltage electron beam excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel display devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depending on their size, shape. degree of aggregation and nature of the protecting organic shells on their surface, gold nanoparticles (AuNPs) can appear red, blue and other colors and emit bright resonance light scattering of various wavelengths. Because of this unique optical property. AuNPs have been extensively explored as probes for sensing/imaging a wide range of analytes/targets, such as heavy metallic cations, nucleic acids, proteins, cells, etc. Since their initial discovery, novel synthetic methods have led to precise control over particle size, shape and stability, thus allowing the modification of a wide variety of ligands on the AuNP surfaces to meet different experimental conditions. This review discusses the synthesis and applications of functionalized AuNPs in chemical sensing and imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocyrstalline Tb3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy (FESEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FESEM images indicate that the Tb3+-doped LaGaO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low-voltage electron beams (0.5-3 kV), the Tb3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tb3+ (D-5(3,4)-F-7(6,5,4,3) transitions). The emission colors of Tb3+-doped LaGaO3 phosphors can be tuned from blue to green by changing the excitation wavelength of ultraviolet light and the doping concentration of Tb3+ to some extent. Relevant luminescence mechanisms are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this presentation is to report a new result of afterglow materials. The Y2OS: Ln(3+) (Ln = Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sin(3+) and Tin(3+) in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the Irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method tinder 1050 degreesC, for 6 It have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be. useful in finding some new long-lasting phosphors with different colors.