264 resultados para COLORADO PLATEAU
A millennium-long tree-ring chronology of Sabina przewalskii on northeastern Qinghai-Tibetan Plateau
Resumo:
Due to its numerous environmental extremes, the Tibetan Plateau -the world's highest plateau-is one of the most challenging areas of modern human settlement. Archaeological evidence dates the earliest settlement on the plateau to the Late Paleolithic, whi
Resumo:
We conducted phylogenetic analyses to identify the closest related living relatives of the Xizang and Sichuan hot-spring snakes (T baileyi and T. zhaoermii) endemic to the Tibetan Plateau, using mitochondrial DNA sequences (cyt b, ND4) from eight specimen
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
National Natural Science Foundation of China (NSFC) [30225008, 30300036, 30530120]; Key Innovation Plan [KSCX2-SW-106]; National Basic Research Project in China [2005cb422005]; National Natural Science Foundation of China [30600062]
Resumo:
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.
Resumo:
Knowledge of the effect of geographic factors on the assemblages of protozoan testate amoebae is still limited, despite there having been a number of studies on this fauna. We applied statistical analyses to data on the distribution of testate amoebae from nine major lakes in the Yunnan Plateau, southwest China. Cluster analysis, based on community structure, separated the lakes into two groups - the oligotrophic/mesotrophic lakes and the hypercutrophic lakes - confirming the idea that the testate amoebae assemblages in lakes are closely related to the trophic status. Additionally, within the oligotrophic/mesotrophic lakes, there was distinct geographic clustering. Linear regression analysis and the Mantel test both revealed that similarity of species composition decreased with increasing geographic distance among the oligotrophic/mesotrophic lakes.
Resumo:
Although new empirical evidence shows that sympatric speciation has occurred in some species, there are few indisputable model organisms for this process of speciation. The two subspecies (Gymnocypris eckloni eckloni and G. e. scoliostomus) of the schizothoracine Gymnocypris fish species complex from a small glacier lake in the Tibetan Plateau, Lake Sunmcuo, fit several of the key characteristics of the sympatric speciation model. We used combined mitochondrial control region sequences and the cytochrome b gene (1894 bp) to address the phylogenetics and population genetics of 232 specimens of G. e. eckloni and G. e. scoliostomus, as well as all of its closely related sister species. We found that: (i) a total of four old lineages were uncovered in the widespread G. e. eckloni, of which only one was shown to be shared with all G. e. scoliostomus individuals and (ii) the new subspecies (G. e. scoliostomus) evolved in Lake Sunmcuo from the ancestral G. e. eckloni population within approximately 0.057 Ma. These two taxa of the species complex are morphologically distinct, and reproductive isolation is further suggested. Ecological disruptive selection based on morphological traits (e.g. mouth cleft characters) and food utilization may be a mechanism of incipient speciation of two sympatric populations within Lake Sunmcuo. This study provides the first genetic evidence for sympatric speciation in the schizothoracine fish.