81 resultados para CIC filters
Resumo:
In this paper, we design resonant reflection grating filters employing the second diffracted orders as the leaky modes, then analyze the bandwidth of the reflection peak and the electric field distributions inside the wavegude under resonance. The numeric calculation confirms that ultra-narrow resonant reflection peaks can be observed in these structures. At the same time, strong electric field enhancement appears under resonance. It provides a new approach to diversify the resonant reflection filters and may open a new way to the realization of ultra-narrow bandwidth filters. (C) 2008 Elsevier B.V. All rights reserved.
Surface plasmon resonance transmission filters at 1053 nm based on metallic grating with narrow slit
Resumo:
Metallic gratings with narrow slits can lead to special optical properties such as strongly enhancing the transmission and considerably strengthening the polarized effect. A narrow-band filter suitable for application in optical communication is designed by sandwiching a metallic grating between two identical dielectric films. The maximum transmission can reach 96% after optimizing the parameters of films and grating at a central wavelength of 1053 nm. It is the first time, to our knowledge, that such high transmission has been reported since the discovery of the extraordinarily high transmission through periodic holes or slits; moreover, the extremely polarized effect is also found in P mode of this symmetric grating.
Resumo:
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in porpoises Phocoena phocoena and Neophocaena phocaenoides asiaeorientalis. The EFR was evoked by amplitude-modulated probes with a modulation rate of 1000 Hz and carrier frequencies from 22.5 to 140 kHz. Equivalent rectangular quality Q(ERB) of the obtained tuning curves varied from 8.3-8.6 at lower (22.5-32 kHz) probe frequencies to 44.8-47.4 at high (128-140 kHz) frequencies. The QERB dependence on probe frequency could be approximated by regression lines with a slope of 0.83 to 0.86 in log-log scale., which corresponded to almost frequency-proportional quality and almost constant bandwidth of 34 kHz. Thus, the frequency representation in the porpoise auditory system is much closer to a constant-bandwidth rather that to a constant-quality manner. (c) 2006 Acoustical Society of America.
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:05:17Z No. of bitstreams: 1 High-Order Microring Filters on SOI Wafer.pdf: 236326 bytes, checksum: dea85274da2a205a54b8a46049db9c94 (MD5)
Resumo:
IEECAS SKLLQG
Resumo:
We have developed a special color film with negative birefringence, which can work as a color filter and a viewing angle extension film for liquid crystal displays (LCDs). A high-performance polyimide (PI), which can be dissolved in the usual organic solvent and shows negative birefringence after lamination, was synthesized to fabricate the film. By mixing PI with suitable proportions of green, blue or red pigment in the solvent, then laminating them onto a glass substrate, we obtained color films with good transmission spectra and suitable chromatic coordinates. The results of our experiments show that the color filters still have negative birefringence but a little lower than that of the pure PI film. and can therefore work as compensation films for normal white twist nematic liquid crystal displays (TN-LCD).
Resumo:
In this paper, a new method for designing three-zone optical pupil filter is presented. The phase-only optical pupil filter and the amplitude-only optical pupil filters were designed. The first kind of pupil for optical data storage can increase the transverse resolution. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in three-dimension imaging in confocal microscopy. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A spectral-filter method is numerically demonstrated to obtain sub-5 fs pulses by using femtosecond filamentation in fused silica. Instead of employing spectral phase compensation, by properly employing a high-pass filter to select the broadened high-frequency spectra that are located almost in phase in the tailing edge of the self-compressed pulses owing to self-steepening, as short as single-cycle pulses can be obtained. For instance, for an input pulse with a duration of 50 fs and energy 2.2 mu J, the minimum pulse duration can reach to similar to 4 fs (about 1.5 cycles) by applying a proper spectral filter. (C) 2008 Optical Society of America