92 resultados para CERIUM OXIDE CATALYSTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2 nanometer powders of different sizes were prepared at low temperature by pyrolysis of amorphous citrate. XRD patterns show that CeO2 is cubic in structure, space group O-h(5)-F-M3M. TEM indicates that the prepared CeO2 is spherical in shape, and the particle size distribution is in narrow range. It was found that calcination temperature is a more important factor affecting the crystallite size of CeO2 than calcining time, the smaller the particle, the bigger the crystal lattice distortion, the worse the crystal growth. Solubility test of CeO2 in nitric acid reveals that the surface activity of CeO2 decreases with the increasing particle sizes. IR spectra analysis shows that the absorption of Ce-O bond is shifted to higher energy with the decrease of CeO2 particle sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitrogen oxides (NO_x) are serious pollutants in earth's atmosphere in the sensethat they are one of the main sources to cause the acid rain. The removal of NO_x is oneof the key research topics in the protection of environmen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 were prepared and used as catalysts for the direct decomposition of NO. The catalysts were characterized by means of XRD, XPS, O-2-TPD, NO-TPD and chemical analysis. By comparing the physico-chemical properties and catalytic activity for NO decomposition, a conclusion could be drawn as follows. The direct decomposition of NO over perovskite and related mixed oxide catalysts follows a redox mechanism. The lower valent metal ions Ni2+ and disordered oxygen vacancies seem to be the active sites in the redox process. The oxygen vacancy plays an important role favorable for the adsorption and activation of NO molecules on one hand and on the other hand for increasing the mobility of lattice oxygen which is beneficial to the reproduction of active sites. The presence of oxygen vacancies is one of the indispensable factors to give the mixed oxides a steady activity for NO decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 with perovskite (ABO(3)) and related(A(2)BO(4)) structures were prepared and the adsorption property for NO and the catalytic activity for NO decomposition over these oxidse were also tested. The catalysts were characterized by means of BET surface measurement, chemical analysis, NO-TPD etc.. It was shown that the adsorption amount of NO is correlated with the concentration of oxygen vacancy formed and the adsorption type and strength of NO are related to the valence of metallic ion. Generally there are three kinds of adsorption species, NO-, NO+ and NO on the mixed oxides, among them the negative adsorpion species (NO-) are active for NO decomposition. The weaker the adsorption of oxygen on the catalyst is, the faster the mobility of oxygen is and the easier the redox process takes place in reproducing the active sites in which the oxygen species (O-, O2-) would participate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and catalytic,activity for propylene oxidation of series oxides B2Mo3-3X-Nb2XO12-4X (X=0.00, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25) have been studied by means of XRD, IR, Raman, SEM, ESR and so on. The results showed that in the range of X < 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Li content in a series of multicomponent oxides LixLa0.5Ti0.5 For methane oxidative coupling has been studied. The catalytic activities of LiLa0.5Ti0.5 catalyst before and after washing with boiling water have been compared. The surface and

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ceria modified Pt/CeO2/Al2O3 and Pt/Al2O3 catalysts were studied in the partial oxidation of methane to syngas. The SEM, XRD, TPR and TPD techniques were used for the catalyst characterization. The addition of ceria could enhance the Pt dispersion and decrease the Pt crystallise size; the activity and selectivity of catalyst for partial oxidation were improved significantly, and the methane total oxidation was suppressed sharply. The ceria effect was also discussed in a detailed way.