34 resultados para Bus lines
Resumo:
An augmented immersed interface method (IIM) is proposed for simulating one-phase moving contact line problems in which a liquid drop spreads or recoils on a solid substrate. While the present two-dimensional mathematical model is a free boundary problem, in our new numerical method, the fluid domain enclosed by the free boundary is embedded into a rectangular one so that the problem can be solved by a regular Cartesian grid method. We introduce an augmented variable along the free boundary so that the stress balancing boundary condition is satisfied. A hybrid time discretization is used in the projection method for better stability. The resultant Helmholtz/Poisson equations with interfaces then are solved by the IIM in an efficient way. Several numerical tests including an accuracy check, and the spreading and recoiling processes of a liquid drop are presented in detail. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
In this paper, the relationship between radiosensitivity, cell cycle alteration and the change of apoptosis in different human hepatoma cell lines irradiated by heavy ions were studied with the aim of building up the base data for clinical therapy. Exponentially growing hepatoma cell lines were irradiated by 80.55 MeV/u(12)C(6+) ions at a dose of 0 Gy, 0.5 Gy, 1 Gy, 2 Gy, 4 Gy and 8 Gy. The radiosensitivity was assessed by means of the colony-forming assay. The DNA content, the percentage of each cell-cycle phase and the apoptosis rate were obtained with flow cytometry methods. After the irradiation, the SF2 (survival fraction at 2 gray) of SMMC-7721 cells were evidently lower than that of HepG2 cells. The S phase arrest, G2/M phase arrest delay and the apoptosis in the two hepatoma cell lines varied with the increase of the dose and repair time. The heavy ions could obviously kill the human hepatoma cell lines. Compared to HepG2 cells, SMMC-7721 cells were more radiosensitive to C-12(6+) ions.
Resumo:
The Al atomic characteristic spectral lines were induced by the impact of Ar-40(q+) ions (8 <= q <= 16; kinetic energy 150 keV) on Al surface. The result shows that by Penning impinging and resonant capture, the ion energy is deposited on the Al surface to excite the target atom, which is different from light excitation. Not only are the transitions betweem electronic configurations of the atomic complex excited, but the enhancing tendency of the characteristic spectral line intensity is consistent with the enhancing tendency of the coulomb potential energy of the incident ions with increasing charged states.
Resumo:
Three human malignancy cell lines were irradiated with Co-60 gamma-rays. Initial chromatid breaks were measured by using the chemically induced premature chromosome condensation technique. Survival curves of cells exposed to gamma rays was linear-quadratic while the efficiency of Calyculin A in inducing PCC of G(2) PCC was about five times more than G(1) PCC. A dose-dependent increase in radiation-induced chromatid/isochromatid breaks was observed in G(1) and G(2) phase PCC and a nearly positive linear correlation was found between cell survival and chromatin breaks. This study implies that low LET radiation-induced chromatid/isochromatid breaks can potentially be used to predict the radiosensitivity of tumor cells either in in vitro experimentation or in in vivo clinical radiotherapy.
Resumo:
The biophysical characteristics of heavy ions make them a rational source of radiation for use in radiotherapy of malignant tumours. Prior to radiotherapy treatment, a therapeutic regimen must be precisely defined, and during this stage information on individual patient radiosensitivity would be of very great medical value. There are various methods to predict radiosensitivity, but some shortfalls are difficult to avoid. The present study investigated the induction of chromatid breaks in five different cell lines, including one normal liver cell line (L02), exposed to carbon ions accelerated by the heavy ion research facility in Lanzhou (HIRFL), using chemically induced premature chromosome condensation (PCC). Previous studies have reported the number of chromatid breaks to be linearly related to the radiation dose, but the relationship between cell survival and chromatid breaks is not clear. The major result of the present study is that cellular radiosensitivity, as measured by D-0, is linearly correlated with the frequency of chromatid breaks per Gy in these five cell lines. We propose that PCC may be applied to predict radiosensitivity of tumour cells exposed to heavy ions.
Resumo:
Amorphous samples of polyether ketone with cardo(PEK-C) have been studied in the solution state by C-13, H-1 high-resolution NMR, The H-1 and C-13 1D NMR spectra were assigned using two dimensional chemical shift correlated spectroscopy, 2D homonuclear correlated(COSY) and heteronuclear correlated (HETCOR) spectroscopy present important information. In this work, the structural units of PEK-C was determined by NMR. For some peaks, these assignments are confirmed by two dimensional long-range heteronuclear correlation experiments, A little modification is made on the original C-13 peak assignments for the main chain, The symmetry and the isotacticity of the chain structure for PEK-C are obvious on NMR data.
Resumo:
Effects of some factors on the performance of our Kalman filter in discrimination of closely spaced overlapping signals were investigated. The resolution power of the filter for overlapping lines can be strengthened by reduction of the step size in scans. The minimum peak separation of two lines which the Kalman filter can effectively handle generally equals two to three times the step size in scans. Significant difference between the profiles of the analysis and interfering lines and multiple lines from matrix in the spectral window of the analysis line are very helpful for the Kalman filter to discern closely spaced analysis and interfering signals correctly, which allow the filter well to resolve the line pair with very small peak distance or even the entirely coincident lines.
Resumo:
A Kalman filter was developed for resolving overlapping lines in inductively coupled plasma atomic emission spectrometry (ICP-AES) and evaluated experimentally with the determination of La in the presence of Ho, and Cu in the presence of Pr. The whiteness of the innovation sequence for an optimal filter was explored to be the criterion for the correction of the wavelength positioning errors which may occur in spectral scans. Under the conditions of the medium-resolution spectrometer and 1.5 pm step size in scans, the filter effectively resolved the Cu/Pr line pair having a small peak separation of 4.8 pm. For the La/Ho line pair with a peak distance of 9.8 pm, an unbiased estimate for La concentration was still obtained even when the signal-to-background ratio was down to 0.048. Favourable detection limits for real samples were achieved. Unstructured backgrounds were modeled theoretically and all spectral scans therefore did not require the correction for solvent.
Resumo:
Generally speaking, productions of thermally-assisted and stepwise fluorescence are the consequence of energy transfer caused by particle collision. In some circumstances, energy transfer caused by particle collision is considerably intense. We have ever used the fluorescence produced by energy transfer of particle collision to measure the branching ratios in the atomic transitions and acquired good results. To our knowledge, the systematic in
Resumo:
This paper reports the development of SSR markers from EST data and their utilization in germplasm identification of Porphyra. The publicly available EST (expressed sequence tag) sequences of Porphyra were searched from the Internet (www.kazura.or.jp/en/plant/porphyra/EST/). From a total of 20,779 obtained EST sequences, 391 SSRs (simple sequence repeats) were analysed with SSRIT software (www.gramene.org/db/searches/ssrtool). From those, 48 SSR primer-pairs were designed and tested by commonly used SSR reaction conditions using 22 Porphyra DNA samples as templates. Results showed that 41 SSR primer-pairs gave good amplification patterns. These were used to conduct SSR analyses of genetic diversity and variety identification of the 22 Porphyra lines. A dendrogram and the DNA fingerprints of the Porphyra lines were developed based on the obtained SSR data.
Resumo:
A human acidic fibroblast growth factor gene, hafgf, was successfully transferred into Laminaria japonica (kelp) gametophytes via microprojectile bombardment using the biolistic PDS-1000/He gene gun. Following phosphinothricin screening, PCR detection and Southern blot analysis, transgenic L. japonica gametophytes were cultivated in an illuminated bubble-column bioreactor to optimize growth conditions. A maximal final dry cell density of 1,695 mg l(-1) was obtained in a batch culture having an initial dry cell density of 129.75 mg l(-1). This was achieved using an aeration rate of 1.08 l air min(-1) l(-1) culture in a medium containing 1.5 mM inorganic nitrate and 0.15 mM phosphate. In addition, the relationship between different nitrogen sources and growth of transgenic gametophytes indicated that both urea and sodium nitrate were effective nitrogen sources for cell growth, while ammonium ions inhibited growth of these gametophytes.
Resumo:
Twenty-seven Porphyra lines from 5 classes, including lines widely used in China, wild lines, and lines introduced to China from abroad in recent years, were screened by means of amplified fragment length polymorphism (AFLP) with 24 primer pairs. From the generated AFLP products, 13 bands that showed stable and repeatable AFLP patterns amplified by primer pairs M-CGA/E-AA and M-CGA/E-TA were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with digitals 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band. On the basis of these results, computerized AFLP DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique AFLP,fingerprinting pattern and can be easily distinguished from others. Software called PGI-AFLP (Porphyra germplasm identification-AFLP) was designed for identification of the 27 Porphyra lines. In addition, 21 specific AFLP markers from 15 Porphyra lines were identified; 6 AFLP markers from 4 Porphyra lines were sequenced, and 2 of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed AFLP DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification, and resource protection of the Porphyra lines.