131 resultados para Bundle-branch Block
Resumo:
At present, acute vascular rejection (AVR) remains a primary obstacle inhibiting long-term graft survival in the pig-to-non-human primate transplant model. The present study was undertaken to determine whether repetitive injection of low dose Yunnan-cobra venom factor (Y-CVF), a potent complement inhibitor derived from the venom of Naja kaouthia can completely abrogate hemolytic complement activity and subsequently improve the results in a pig-to-rhesus monkey heterotopic heart transplant model. Nine adult rhesus monkeys received a heterotopic heart transplant from wild-type pigs and the recipients were allocated into two groups: group 1 (n = 4) received repetitive injection of low dose Y-CVF until the end of the study and group 2 (n = 5) did not receive Y-CVF. All recipients were treated with cyclosporine A (CsA), cyclophosphamide (CyP) and steroids. Repetitive Y-CVF treatment led to very dramatic fall in CH50 and serum C3 levels (CH50 < 3 units/C3 remained undetectable throughout the experiment) and successfully prevented hyperacute rejection (HAR), while three of five animals in group 2 underwent HAR. However, the continuous suppression of circulating complement did not prevent AVR and the grafts in group 1 survived from 8 to 13 days. Despite undetectable C3 in circulating blood, C3 deposition was present in these grafts. The venular thrombosis was the predominant histopathologic feature of AVR. We conclude that repetitive injection of low dose Y-CVF can be used to continuously suppress circulating complement in a very potent manner and successfully prevent HAR. However, this therapy did not inhibit complement deposition in the graft and failed to prevent AVR. These data suggest that using alternative pig donors [i.e. human decay accelerating factor (hDAF)-transgenic] in combination with the systemic use of complement inhibitors may be necessary to further control complement activation and improve survival in pig-to-non-human primate xenotransplant model.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
Three-terminal ballistic junctions (TBJs) are fabricated from a high-mobility InP/In0.75Ga0.25As heterostructure by electron-beam lithography. The voltage output from the central branch is measured as a function of the voltages applied to the left and right branches of the TBJs. The measurements show that the TBJs possess an intrinsic nonlinearity. Based on this nonlinearity, a novel room-temperature functional frequency mixer and phase detector are realized. The TBJ frequency mixer and phase detector are expected to have advantages over traditional circuits in terms of simple structure, small size and high speed, and can be used as a new type of building block in nanoelectronics.
Resumo:
A dynamic dc voltage band was found emerging from each sawtooth-like branch of the current-voltage characteristics of a doped GaAs/AlAs superlattice in the transition process from static to dynamic electric-field domain formation caused by increasing the sample temperature. As the temperature increases, these dynamic dc voltage bands expand within each sawtooth-like branch, squeeze out the static regions, and join up together to turn the whole plateau into dynamic electric-field domain formation. These results are well explained by a general analysis of stability of the sequential tunneling current in superlattices. (C) 1999 American Institute of Physics. [S0003-6951(99)04443-5].
Resumo:
This is a study on a certain group theoretic property of the set of encryption functions of a block cipher. We have shown how to construct a subset which has this property in a given symmetric group by a computer algebra software GAP4.2 (Groups, Algorithms, and Programming, Version 4.2). These observations on group structures of block ciphers suggest us that we may be able to set a trapdoor based on meet-in-the-middle attack on block ciphers.
Resumo:
IEEE Computer Society
Resumo:
A design for an IO block array in a tile-based FPGA is presented.Corresponding with the characteristics of the FPGA, each IO cell is composed of a signal path, local routing pool and configurable input/output buffers.Shared programmable registers in the signal path can be configured for the function of JTAG, without specific boundary scan registers/latches, saving layout area.The local routing pool increases the flexibility of routing and the routability of the whole FPGA.An auxiliary power supply is adopted to increase the performance of the IO buffers at different configured IO standards.The organization of the IO block array is described in an architecture description file, from which the array layout can be accomplished through use of an automated layout assembly tool.This design strategy facilitates the design of FPGAs with different capacities or architectures in an FPGA family series.The bond-out schemes of the same FPGA chip in different packages are also considered.The layout is based on SMIC 0.13μm logic 1P8M salicide 1.2/2.5 V CMOS technology.Our performance is comparable with commercial SRAM-based FPGAs which use a similar process.
Resumo:
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
Resumo:
The tunable BIG-RW distributed Bragge reflector lasers with two different coupling coefficient gratings are proposed and fabricated.The threshold current of the laser is 38mA and the output power is more than 8mW.The tunable range of tthe laser is 3.2nm and the side moded suppression ratio is more than 30dB.The variation of the output power within the tunable wavelength range is less than 0.3dB
Resumo:
The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)(60)(PO)(40)(EO)(60) (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1x10(5) s(-1), the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1x10(5) s(-1), the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.
Resumo:
A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.
Resumo:
The inelastic component of the key astrophysical resonance (1(-), E-x=6.15 MeV) in the O-14(alpha,p)F-17 reaction has been studied by using the resonant scattering of F-17+p. The experiment was done at REX-ISOLDE CERN with the Miniball setup. The thick target method in inverse kinematics was utilized in the present experiment where a 44.2 MeV F-17 beam bombarded a similar to 40 mu m thick (CH2)(n) target. The inelastic scattering protons in coincidence with the de-excited 495 keV gamma rays have been clearly seen and they are from the inelastic branch to the first excited state in F-17 following decay of the 1(-) resonance in Ne-18. Some preliminary results are reported.