75 resultados para Batch digesters
Resumo:
Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The ion-exchange equilibrium of bovine serum albumin (BSA) to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments at pH values ranging from 5.26 to 7.6 and ionic strengths from 10 to 117.1 mmol/l. Using the unadjustable adsorption equilibrium parameters obtained from batch experiments, the applicability of the steric mass-action (SMA) model was analyzed for describing protein ion-exchange equilibrium in different buffer systems. The parametric sensitivity analysis was performed by perturbing each of the model parameters, while holding the rest constant. The simulation results showed that, at high salt concentrations or low pHs close to the isoelectric point of the protein, the precision of the model prediction decreased. Parametric sensitivity analysis showed that the characteristic charge and protein steric factor had the largest effects on ion-exchange equilibrium, while the effect of equilibrium constant was about 70%-95% smaller than those of characteristic charge and steric factor under all conditions investigated. The SMA model with the relationship between the adjusted characteristic charge and the salt concentration can well predict the protein adsorption isotherms in a wide pH range from 5.84 to 7.6. It is considered that the SMA model could be further improved by taking into account the effect of salt concentration on the intermolecular interactions of proteins. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Alexandrium tamarense toxins have great value in biotechnology research as well as important in connection with shellfish poisoning. The influence of nitrate or nitrate and phosphate supplementation on cell biomass and toxin content were investigated in batch cultures. When cultures at low nitrate (88.2 mu M NaNO3) Were supplemented with 793.8 mu M NaNO3 at day 10 the cell density and cellular toxin contents were increased by 6-29% and 20-76%, respectively, compared with controls, and maximal values were 43,600 cells/ml (day 38) and 0.91 pg/cell (day 31). Supplementation with nitrate at day 14 or with nitrate and phosphate at day 10/14 to the cultures did not increase the cell density compared with the non-supplemented middle nitrate or high phosphate (108 mu M NaH2PO4) cultures, respectively, but increased the cellular toxin contents by an average of 52%. The results showed that supplementation with nitrate or with nitrate and phosphate at different growth phases of the cultures increased toxin yield by an average of 46%. Supplementation with nitrate at selected times to maintain continuous low level of nitrate might contribute to the effective increase of toxin yield of A. tamarense. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Excessive accumulation of dissolved organic matter (DOM) in the culture ponds of Spirulina platensis is usually considered to be one of the potential factors affecting the production of S. platensis, however, we are not quite aware of effects of DOM on the growth and pigments synthesis of S. platensis. In the present study, S. platensis was grown in batch or semi-continuous cultures using the filtrate in the culture ponds that had not been renewed for years. It was found that disssolved organic carbon up to 60 mg/L did not bring about an inhibitory effect on the growth of S. platensis, but increased the contents of chlorophyll a and phycocyanin instead. However, further accumulation of dissolved organic matter could decrease the content of chlorophyll a.
Resumo:
Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.
Resumo:
Gibel carp (Carassius auratus gibelio Bloch) is a natural gynogenetic fish which requires sperm of the same or related species to activate egg development. The eggs of one gibel carp were divided into two batches. One batch was 'fertilized' with sperm from gibel carp (strain DD), and the other 'fertilized' with sperm from red common carp (Cyprinus carpio red variety) (strain DR). The juveniles were transferred to the laboratory 36 days post-hatch. Triplicate groups of each strain were fed a formulated diet at either 3% or satiation ration for 8 weeks. At both the restricted and satiation rations, specific growth rate was significantly higher in strain DR than in strain DD. At the 3% ration, there was no significant difference in feeding rate or feed conversion efficiency between the two strains. At the satiation ration, strain DR had a significantly lower feeding rate but higher feed conversion efficiency than strain DD. At the satiation ration, strain DR had a significantly lower intake protein, but higher recovered protein than strain DD. There was no significant difference in faecal protein loss between the two strains. At the 3% ration, strain had no significant effects on intake protein, faecal protein or recovered protein. Neither faecal energy loss nor recovered energy was affected by strain or ration. At both the 3% and satiation ration, final body contents of dry matter and lipid were significantly lower in strain DR than strain DD, while there was no significant difference in protein and energy content between the two strains at either ration level. The results suggested that gibel carp 'fertilized' with sperm of common carp grew faster than those 'fertilized' with sperm of gibel carp through increased feed conversion efficiency and protein retention.
Resumo:
Fishes, the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics. Nuclear transplantation in fish has been thoroughly studied in China since 1960s. Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults. Most importantly, nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish. This was the first case of cloned fish with somatic cells. Based on the technique of microinjection, recombinant MThGH gene has been transferred into fish eggs and the first batch of transgenic fish were produced in 1984. The behavior of foreign gene was characterized and the onset of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis. This eventually led to the transgenic mosaicism. The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults. The transgenic common carp were more efficient in utilizing dietary protein than the controls. An "all-fish" gene construct CAgcGH has been made by splicing the common carp beta-actin gene (CA) promoter onto the grass carp growth hormone gene (gcGH) coding sequence. The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait. Combination of techniques of fish cell culture, gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21(st) century.
Resumo:
The existing methods for the discrimination of varieties of commodity corn seed are unable to process batch data and speed up identification, and very time consuming and costly. The present paper developed a new approach to the fast discrimination of varieties of commodity corn by means of near infrared spectral data. Firstly, the experiment obtained spectral data of 37 varieties of commodity corn seed with the Fourier transform near infrared spectrometer in the wavenurnber range from 4 000 to 12 000 cm (1). Secondly, the original data were pretreated using statistics method of normalization in order to eliminate noise and improve the efficiency of models. Thirdly, a new way based on sample standard deviation was used to select the characteristic spectral regions, and it can search very different wavenumbers among all wavenumbers and reduce the amount of data in part. Fourthly, principal component analysis (PCA) was used to compress spectral data into several variables, and the cumulate reliabilities of the first ten components were more than 99.98%. Finally, according to the first ten components, recognition models were established based on BPR. For every 25 samples in each variety, 15 samples were randomly selected as the training set. The remaining 10 samples of the same variety were used as the first testing set, and all the 900 samples of the other varieties were used as the second testing set. Calculation results showed that the average correctness recognition rate of the 37 varieties of corn seed was 94.3%. Testing results indicate that the discrimination method had higher precision than the discrimination of various kinds of commodity corn seed. In short, it is feasible to discriminate various varieties of commodity corn seed based on near infrared spectroscopy and BPR.
Resumo:
The acid-base stabilities of Al-13 and Al-30 in polyaluminum coagulants during aging and after dosing into water were studied systematically using batch and flow-through acid-base titration experiments. The acid decomposition rates of both Al-13 and Al-30 increase rapidly with the decrease in solution pH. The acid decompositions of Al-13 and Al-30 with respect to H+ concentration are composed of two parallel first-order and second-order reactions, and the reaction orders are 1.169 and 1.005, respectively. The acid decomposition rates of Al-13 and Al-30 increase slightly when the temperature increases from 20 to ca. 35 A degrees C, but decrease when the temperature increases further. Al-30 is more stable than Al-13 in acidic solution, and the stability difference increases as the pH decreases. Al-30 is more possible to become the dominant species in polyaluminum coagulants than Al-13. The acid catalyzed decomposition and followed by recrystallization to form bayerite is one of the main processes that are responsible for the decrease of Al-13 and Al-30 in polyaluminum coagulants during storage. The deprotonation and polymerization of Al-13 and Al-30 depend on solution pH. The hydrolysis products are positively charged, and consist mainly of repeated Al-13 and Al-30 units rather than amorphous Al(OH)(3) precipitates. Al-30 is less stable than Al-13 upon alkaline hydrolysis. Al-13 is stable at pH < 5.9, while Al-30 lose one proton at the pH 4.6-5.75. Al-13 and Al-30 lose respective 5 and 10 protons and form [Al-13] (n) and [Al-30] (n) clusters within the pH region of 5.9-6.25 and 5.75-6.65, respectively. This indicates that Al-30 is easier to aggregate than Al-13 at the acidic side, but [Al-13] (n) is much easier to convert to Alsol-gel than [Al-30] (n) . Al-30 possesses better characteristics than Al-13 when used as coagulant because the hydrolysis products of Al-30 possess higher charges than that of Al-13, and [Al-30] (n) clusters exist within a wider pH range.
Resumo:
The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.
Resumo:
The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.
Resumo:
研究食品加工剩余物板栗壳对水中Cu2+的吸附性能,为其用于含铜废水的处理提供理论依据。【方法】研究吸附质溶液pH、Cu2+质量浓度、吸附剂用量、粒径、吸附温度和时间对板栗壳吸附Cu2+效果的影响,探讨吸剂和吸附剂循环利用次数对解吸和再生的影响;并采用穿透曲线和洗脱曲线对动态吸附进行了分析。【结果】吸附质溶液pH值为6、Cu2+起始质量浓度为20 mg/L、吸附剂粒径为0.25 mm时的吸附效果较好,该吸附为放热过程,升高温度虽然可以加快吸附进程,但却降低了吸附量和去除率。Na+和Ca2+对Cu2+的解吸置换能力较弱,0.1mol/L HCl可使96.1%的Cu2+得以解吸回收。通过Thomas模型预测,在固定床柱吸附条件下饱和吸附量为10.94mg/g。【结论】板栗壳对水中Cu2+的吸附性能较好,因而具有很好的应用前景。
Resumo:
砷是毒性最强的元素之一,水体中砷的污染己经引起人们广泛的关注。我国的新疆、内蒙、山西和台湾等省和地区地下水砷含量严重超标。全球共有5,000多万人遭受高砷饮用水的威胁,其中中国有1,500多万,是饮用水砷污染最严重的国家之一。WHO推荐饮用水砷的最高允许浓度从原来的50 µg•L-1已降至10 µg•L-1。更为严格的砷卫生标准的颁布,对作为饮用水源的地下水中的砷去除工艺提出了更高的要求。吸附法除砷比膜法、混凝法和离子交换法更安全、简便,是砷去除工艺中最有效的方法之一。 首先,本研究通过优化制备条件(包括炭种类的选择、炭的粒径大小、还原剂的浓度及滴定速率、反应温度、铁盐的种类及浓度、分散剂的比例及浓度),制备了负载型纳米铁。考虑到砷的去除效率、工程应用的可行性以及经济性,最优的制备条件如下:选用粒径为20~40目煤质炭,在室温、一定的分散剂比例及浓度,0.2 M KBH4滴速为20 d•min-1时所制备的Fe/炭为82.0 mg•g-1;纳米铁在活性炭孔内呈针状,其直径为30~500 nm,长度为1,000~2,000 nm。绝大多数的铁都负载到活性炭内部,这在处理水时铁不流失很重要。 其次,利用制备的负载型纳米铁作吸附载体,进行了饮用水中As(Ⅴ)的吸附去除实验。研究了该吸附剂对As(Ⅴ)的吸附等温线、动力学以及影响动力学的各种因素(包括As(Ⅴ)的不同初始浓度、吸附剂用量、pH值、共存离子和不同温度)、pH值、共存离子等环境条件对As(Ⅴ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现在前12 h内吸附较快,72 h时达到了平衡。用Langmuir 吸附等温式估算出As(Ⅴ)的吸附量为12.0 mg•g-1。该吸附剂在pH 6.5, (25±2)℃, As(Ⅴ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时,As(Ⅴ)的去除率为75.2%;当把吸附剂的用量增加到1.5 g•L-1时,As(Ⅴ)的去除率可达99.9%以上。吸附剂可以用0.1M的NaOH浸泡12 h后即可再生,再生效率较高。常见的阴离子中PO43-、SiO32-对As(Ⅲ)的去除抑制较大,而SO42-、CO32-、C2O42-等离子对砷的去除影响较小。Fe2+对As(Ⅲ)的吸附抑制作用较大而其它阳离子影响不大。吸附剂可用0.1 M NaOH 有效再生,并且具有良好的机械性能。实验室初步实验数据表明,该吸附剂对饮用水除砷具有较好的应用前景。 第三,利用实验室制备的负载型纳米铁对饮用水中As(Ⅲ)的吸附去除也进行了研究。考察了吸附等温线、动力学以及影响动力学的各种因素、pH值、共存离子等环境条件对As(Ⅲ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现,该吸附剂在pH 6.5, (25±2)℃, As(Ⅲ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时, 对As(Ⅲ)的去除率为99.8%;其吸附容量为1.996mg•g-1。吸附过程中部分As(Ⅲ)被氧化。与As(Ⅴ)的吸附相比,该吸附剂对As(Ⅲ)的效率比较高-而常见的其它除砷吸附剂如载铁纤维棉等,对As(Ⅴ)的效率比As(Ⅲ)高,为有效去除As(Ⅲ),常常需要专门加上氧化这一过程。 最后,利用负载型纳米铁对饮用水中As(Ⅲ) 的氧化性能进行考察,发现该吸附剂不但能够有效吸附去除饮用水中的砷,而且还能把As(Ⅲ)有效地氧化为As(Ⅴ)。经过对吸附剂的构成组分分析发现,活性炭表面因富含多种官能团而对三价砷的氧化作用最大;其次是纳米铁也能把As(Ⅲ)氧化为As(Ⅴ)。
Resumo:
本文从四川绵竹酒厂、成都市龙泉长安垃圾填埋场以及四川大学荷花池底的厌氧污泥中先后分离得到63株厌氧产氢菌,其中H-8、H-61、HC-10等16株产氢细菌产氢能力较高,HC-10的产氢能力最高,最大产氢量和最大产氢速率分别达到2840 ml H2/L培养基和25.39 mmol H2/g drycell·h,对HC-10进行生理生化鉴定和分子生物学鉴定,判定其为clostridium sp.,对HC-10的产氢条件进行了研究,结果表明,该菌的最适生长温度为35 ℃,最适生长初始pH为7,以葡萄糖为最佳碳源,以蛋白胨为最佳氮源,不利用无机氮源,其产氢发酵液相产物以乙醇和乙酸为主,其发酵类型属于乙醇型发酵。此外,以酒糟废液作为底物,进行了菌株HC-10的生物强化试验,研究表明,投加了HC-10的强化系统其产氢量比对照高出40.32%。 同时为了获得厌氧产氢菌的高效突变株,分别以产氢菌H-8和H-61为原始菌株进行微波诱变处理,对微波诱变参数进行了优化,考察了突变株的遗传稳定性、产氢特性及耐酸性。菌株H-8经过微波诱变得到5株高产氢突变株HW7、HW33、HW181、HW184、HW195,经多次传代表明HW195是稳定的高产突变株。突变株HW195具有较好的耐酸性,在pH值为2.8时仍能生长。通过间歇发酵实验,其最大产氢量和最大产氢速率分别达到2460 mL/L培养基和27.97 mmol H2/g drycell·h,比原始菌分别提高了50.75%和41.7%。菌株H-61经过微波诱变后选育得到的突变株HW-18,其最大产氢量和最大产氢速率分别达到2190 mL/L培养基和25.86 mmol H2/g drycell·h,比原始菌分别提高了23.03%和31.00%。 为了对比各种诱变方式对产氢菌产氢能力的影响,以厌氧产氢菌H-61为原始菌株,先后经亚硝基胍(NTG)、紫外(UV)诱变,选育得到1株高产突变株HCM-23。在葡萄糖浓度为10 g/L的条件下,其产氢量为3024 mL/L培养基,比原始菌株提高了69.89%;其最大产氢速率为33.19 mmol H2/g drycell·h,比原始菌株提高了68.14%。经过多次传代实验,稳定性良好。其发酵末端产物以乙醇和乙酸为主,属于典型乙醇型发酵。其最适产氢初始pH为6.5,最适生长温度为36 ℃,以蔗糖为最佳碳源。与原始菌株相比,突变株HCM-23的产氢特性发生了改变,如生长延滞期延长,可利用无机氮源等。 From anaerobic activated sludge, 16 strains of hydrogen producing bacteria were newly isolated. One of them named as HC-10 had the highest hydrogen producing capability, under the batch fermentative hydrogen production condition, the maximal hydrogen yield and hydrogen production rate was 2840 mL/L culture and 25.39 mmol H2/g drycell·h. It was identified as clostridium sp.HC-10 by 16S rDNA sequence analysis. Various parameters for hydrogen production, including substrates, initial pH and temperature, have been studied. The optimum condition for hydrogen producing of strain HC-10 were achieved as: initial pH 7.0, temperature 35 ℃, glucose as the favorite substrate, Moreover, using distiller's solubles wastewater as substrate, HC-10 strain was added in the biohydrogen producing system to research the bioaugmentation effection. The results showed that the hydrogen production of bioaugmentation system was 40.32% higher than the noaugmentation system. An anaerobic, hydrogen producing strain H-8 was irradiated by microwave to optimize the microwave mutagenesis condition, and to test the heredity, hydrogen-producing potential and aciduric of the mutants. An aciduric mutant named as HW195 with steady hydrogen-producing capability was obtained, which can grow at pH 2.8. Its capability of hydrogen production was tested in the batch culture experiments. The maximum hydrogen yield and hydrogen production rate was 2460 mL/L culture and 29.97 mmol H2/g drycell·h, which was 50.7% and 41.7% higher than those of the initial strain, respectively. When used the strain H-61 as original strain, a mutant named as HW18 was obtained. The maximum hydrogen yield and hydrogen production rate was 2190 mL/L culture and 25.86 mmol H2/g drycell·h, which was 23.03% and 31.00% higher than those of the initial strain, respectively. The results demonstrated that microwave mutagenesis could be used in the field of hydrogen producing microorganism. The hydrogen producing strain H-61 was used as an original strain which was induced by NTG and UV for increasing and the hydrogen production capability. One of the highest efficient H2-producing mutants was named as HCM-23 with its stable hydrogen production capability. which was tested in the batch culture experiments. With the condition of 10 g/L glucose, its cumulative hydrogen yield and hydrogen production rate was 3024 mL/L culture and 33.19 mmol H2/g drycell·h, 69.89%and 68.14% higher than that of the original strain, respectively. The terminal liquid product compositions showed that the mutant HCM-23 fermentation was ethanol type, while the original strain H-61 fermentation was butyric acid type. Varieties of parameters of hydrogen production fermentation were studied, including time, carbon source, nitrogen source, glucose concentration, glucose utilization, initial pH and incubation temperature had been studied, indicated the optimum condition of hydrogen production for the mutant HCM-23 as initial pH6.5, temperature 36 ℃, and the favorite substrate was sucrose. The hydrogen production characters of the mutant and the original strain were different, such as, the growth lag phase and the utilization of inorganic nitrogen source, etc. This work shows a good application potential of NTG-UV combined mutation in the biohydrogen production. And the hydrogen production mechanism and metabolic pathway should be explored furthermore.