66 resultados para Ball velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper revisits a simple beam model used by Chater et al. (1983, Proc. IUTAM Symp. Collapse, Cambridge University Press) to examine the dynamics of propagating buckles on it. It was found that, if a buckle is initiated at a constant pressure higher than the propagation pressure of the model (P-p), the buckle accelerates and gradually reaches a constant velocity which depends upon the pressure, while if it is initiated at P-p, the buckle propagates at a velocity which depends upon the initial imperfection. The causes for the difference are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data of velocity and magnetic fields in the solar photosphere (5324 angstrom) and the chromosphere (4861 angstrom) clearly show the features of tangential discontinuity of velocity in the chromosphere. The velocity fields in and near the solar active region named No. 88029 by the Huairou Station have been analyzed in detail. A lot of magnetohydrodynamic discontinuous surfaces, especially the tangential discontinuities, are shown from the observations. The calculations of the thickness of discontinuous layer and the evolution time of instability agree with the observational results. The variations of the flow field will directly influence the evolutions and changes of the active region as the magnetic field are coupled closely with the plasma motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin foil observations using transmission electron microscopy reveal that the density of dislocations within the band is extremely high and the tangled arrangement of dislocations tends to align along the length of the shear band. The grains in the band were also elongated along the shear band and clearly exhibited a crystallographic nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parameters at the symmetrical axis of a cylindrical plume characterize the strength of this plume and provide a boundary condition which must be given to investigate the structure of a plume. For Newtonian fluid with a temperature-and pressure-dependence viscosity, an asymptotical solution of hydrodynamic equations at the symmetrical axis of the plume is found in the present paper. The temperature, upward velocity and viscosity at the symmetrical axis have been obtained as functions of depth, The calculated results have been given for two typical sets of Newtonian rheological parameters. The results obtained show that the temperature distribution along the symmetrical axis is nearly independent of the theological parameters. The upward velocity at the symmetrical axis, however, is strongly dependent on the rheological parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scale-similarity model for Lagrangian two-point, two-time velocity correlations LVCs in isotropic turbulence is developed from the Kolmogorov similarity hypothesis. It is a second approximation to the isocontours of LVCs, while the Smith-Hay model is only a first approximation. This model expresses the LVC by its space correlation and a dispersion velocity. We derive the analytical expression for the dispersion velocity from the Navier-Stokes equations using the quasinormality assumption. The dispersion velocity is dependent on enstrophy spectra and shown to be smaller than the sweeping velocity for the Eulerian velocity correlation. Therefore, the Lagrangian decorrelation process is slower than the Eulerian decorrelation process. The data from direct numerical simulation of isotropic turbulence support the scale-similarity model: the LVCs for different space separations collapse into a universal form when plotted against the separation axis defined by the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we measured 14 horizontal velocity profiles along the vertical direction of a rectangular microchannel with aspect ratio alpha = h/w = 0.35 (h is the height of the channel and w is the width of the channel) using microPIV at Re = 1.8 and 3.6. The experimental velocity profiles are compared with the full 3D theoretical solution, and also with a Poiseuille parabolic profile. It is shown that the experimental velocity profiles in the horizontal and vertical planes are in agreement with the theoretical profiles, except for the planes close to the wall. The discrepancies between the experimental data and 3D theoretical results in the center vertical plane are less than 3.6%. But the deviations between experimental data and Poiseuille's results approaches 5%. It indicates that 2D Poiseuille profile is no longer a perfect theoretical approximation since a = 0.35. The experiments also reveal that, very near the hydrophilic wall (z = 0.5-1 mu m), the measured velocities are significantly larger than the theoretical velocity based on the no-slip assumption. A proper discussion on some physical effects influencing the near wall velocity measurement is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In near wall measurements with microPIV/PTV, whether seeding particles can be effectively used to detect local fluid velocity is a crucial problem. This talk presents our recent measurements in microchannels [1][2]. Based on measured velocity profiles with 200nm and 50nm in pure water, we found that the measured velocity profiles are agreed with the theoretical values in the middle of channel, but large deviations between measured data and theoretical prediction appear close to wall (0.25mm velocity deviation appeared in shear flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group velocity of the probe light pulse (GVPLP) propagating through an open Lambda-type atomic system with a spontaneously generated coherence is investigated when the weak probe and strong driving light fields have different frequencies. It is found that adjusting the detuning or Rabi frequency of the probe light field can realize switching of the GVPLP from subluminal to superluminal. Changing the relative phase between the probe and driving light. elds or atomic exit and injection rates can lead to GVPLP varying in a wider range, but cannot induce transformation of the property of the GVPLP. The absolute value of the GVPLP always increases with Rabi frequency of the driving light field increasing. For subluminal and superluminal propagation, the system always exhibits the probe absorption, and GVPLP is mainly determined by the slope of the steep dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.