58 resultados para BONE METABOLISM
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Resumo:
In this study, aspects of the structural mechanics of the upper and lower limbs of the three Chinese species of Rhinopithecus were examined. Linear regression and reduced major axis (RMA) analyses of natural log-transformed data were used to examine the dimensions of limb bones and other relationships to body size and locomotion. The results of this study suggest that: (1) the allometry exponents of the lengths of long limbs deviate from isometry, being moderately negative, while the shaft diameters (both sagittal and transverse) show significantly positive allometry; (2) the sagittal diameters of the tibia and ulna show extremely significantly positive allometry - the relative enlargement of the sagittal, as opposed to transverse, diameters of these bones suggests that the distal segments of the fore- and hindlimbs of Rhinopithecus experience high bending stresses during locomotion; (3) observations of Rhinopithecus species in the field indicate that all species engage in energetic leaping during arboreal locomotion. The limbs experience rapid and dramatic decelerations upon completion of a leap. We suggest that these occasional decelerations produce high bending stresses in the distal limb segments and so account for the hypertrophy of the sagittal diameters of the ulna and tibia.
Resumo:
The present study aimed to evaluate the effect of dietary linolenic acid (LNA)linoleic acid (LA) ratio on growth performance, hepatic fatty acid profile and intermediary metabolism of juvenile yellow catfish Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets were formulated to contain incremental levels of LNA from 0 to 5% at the expense of corn oil (rich in LA), resulting in six dietary treatments with LNA to LA ratios ranging from 0.35 to 14.64. The experiment continued for 7 weeks. Best growth and feed intake were obtained in the fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). In contrast, feed conversion ratio was the lowest for fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). Dietary LNA to LA ratios significantly influenced viscerosomatic index and hepatosomatic index (P<0.05), but not condition factor (P>0.05). Body composition was also significantly influenced by dietary LNA to LA ratios (P<0.05). Generally, liver FA compositions reflected dietary FA profiles. Declining LA and increasing LNA contents in liver were observed with the increasing dietary LNA/LA ratios (P<0.05). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased with the increasing LNA to LA ratios, suggesting that yellow catfish could elongate and desaturate C18 polyunsaturated fatty acids into highly unsaturated fatty acids. As a consequence, the n-6 fatty acids (FA) declined, and total n-3 FA and n-3/n-6 ratios increased with the dietary ratios of LNA/LA (P<0.05). Dietary LNA to LA ratios significantly influenced several enzymatic activities involved in liver intermediary metabolism (P<0.05), such as lipoprotein lipase, hepatic lipase, pyruvate kinase, succinate dehydrogenase, malic dehydrogenase and lactate dehydrogenase, suggesting that dietary LNA/LA ratios had significant effects on nutrient metabolism in the liver. To our knowledge this is the first demonstration of the effects of dietary LNA to LA ratios on the enzymatic activities of liver in fish, which provides information on diet quality and utilization, and can also be used as an indicator of the nutritional status of this fish. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The physiological differences for three bloom-forming cyanobacteria (Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Aphanizomenon flos-aquae) were investigated. In comparison with M. aeruginosa and A. flos-aquae, C. raciborskii exhibited a significantly higher concentration of carotenoids, higher values in maximum photosynthesis rate (P-m), apparent photosynthetic efficieny (a), and maximum electron transport rate (ETRmax) during the growth period. In addition, higher extracellular alkaline phosphatase activities and lower light compensation point (I-c) were also detected in C raciborskii (p < 0.05, ANOVA). Therefore, it is suggested that the higher photosynthetic activities, more effective uptake and utilization to phosphate, and low light requirements might play important roles in the occurrence and invasive behavior of C. raciborskii. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.
Resumo:
Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.
Resumo:
The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.
Resumo:
This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 mu g/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content. Reduced glutathione (GSH) and total glutathione (tGSH) content as well as glutathione reductase (GR), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) activities significantly increased after 3-4 days exposure in the highest two concentration treated groups, while decreased until reaching the control values except for GPX at day 6. Oxidized glutathione (GSSG) content markedly increased compared with control in high concentration MC-RR treated group after 6 days exposure. The GSH/GSSG ratio was much higher than control in 10 mu g/mL MC-RR treated group at day 4, but after 6 days exposure, the ratios in all treated groups were lower than that of the control group.