91 resultados para BISMUTH IODIDES
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+ codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (similar to 750 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 mn, corresponding to the transitions 1G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (similar to 730 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
New lithium-barium-lead-bismuth glasses with low OH- concentration have been obtained. The role of the different components in the glass formation has been explored from the thermal, density, and refractive index measurements. The T-g, T-x, and T-x-T-g values of these glasses are in the range of 358-400, 453-575, and 87-197 degreesC, respectively. The densities (p) and refractive indices of these glasses are mainly affected by Bi2O3 and PbO contents. A wide transmitting window from visible to infrared (IR) regions for some compositions of these glasses has been observed, which makes them appealing candidates for different optical applications such as upconverting phosphors, new laser materials, optical waveguides, and crystal-free fibre drawing. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Er3+/Yb3+-codoped novel oxyfluoride bismuth-germanium glass was prepared and its up-conversion fluorescence property under 975 nm excitation has been studied. Intense green and weak red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible up-conversion mechanism was also evaluated. The optimal Yb3+-Er3+ concentration ratio is found based on the direct lifetime measurements of excited levels for Er3+ ion. The structure of this novel oxyfluoride bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel oxyfluoride bismuth-germanium glass with relatively lower maximum phonon energy (similar to 731 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Tm3+/Yb3+-codoped gernianate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional ruching and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4)->H-3(6) and (1)G(4)->H-3(4), respectively, were observed at room temperature. The possible Up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties in ytterbium-sensitized erbrium-doped novel lead-free germanium bismuth-lanthanum glass have been studied. The structure of lead-free germanium-bismuth-lanthanum glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. This novel lead-free germanium-bismuth-lanthanum glass with low maximum phonon energy (similar to 751 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Published by Elsevier B.V.
Resumo:
We report on the effect of various alkaline-earth metal oxides on the broadband infrared luminescence covering 1000-1600 nm wavelength region from bismuth-doped silicate glasses. The full width at half maximum (FWHM) of the infrared luminescence and the fluorescent lifetime is more than 200 nm and 400 mu s, respectively. The fluorescent intensity decreases with increasing basicity of host glasses. Besides the broadband infrared luminescence, luminescence centered at 640 nm was also observed, which should be ascribed to Bi2+ rather than to the familiar Bi3+. We suggest that the infrared luminescence should be assigned to the X-2 (2)Pi (3/2) -> X-1 (2)Pi(1/2) transition of BiO molecules dispersed in the host glasses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Absorption and luminescence spectra and optical amplification in bismuth-doped germanate silicate glass were investigated. Two kinds of bismuth ion valence states could exist in the glass. One is Bi2+, which has shown red luminescence, another might be Bi+, which is the active center for infrared luminescence. The infrared luminescence excited at 700, 800, and 980 nm should be ascribed to the electronic transition P-3(1) --> P-3(0) of Bi+ ions in three distinct sites. The shifting, broadening, and multiple configuration of the luminescence could be due to the randomly disorder of local environment and multiple sites of the active centers. In this glass, obvious optical amplification was realized at 1300 nm wavelength when excited at 808 and 980 nm, respectively.
Resumo:
Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.