37 resultados para BIOTIC INTERCHANGE
Resumo:
利用动态密闭气室法(Licor-6400-09),对锦州玉米生长季(5~9月)农田土壤呼吸作用动态及其影响因子进行连续两年的野外动态观测,分析表明,在植株尺度上,玉米地土壤呼吸作用存在明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。玉米地土壤呼吸作用的日变化为不对称的单峰型曲线,最小值和最大值分别出现在6:00~7:00和13:00左右。2005年玉米生长季土壤呼吸速率均值为3.16 µmol CO2 •m-2•s-1,最大值为4.77 µmol CO2 •m-2•s-1,出现在7月28日,最小值为1.31 µmol CO2 •m-2•s-1,出现在5月4日。 植物根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。在土壤呼吸作用日变化中,土壤呼吸速率(SR, µmol CO2 •m-2•s-1)与10 cm土壤温度(T, ℃)均呈显著的指数函数关系 。在季节尺度上,参数α和β是波动的,玉米净第一性生产力(NPP, g •m-2 •d-1)和生物量(B, g •m-2)分别为影响参数α和β季节性波动的主导因素。鉴于此,建立了方程 用以模拟土壤呼吸作用的季节变化。土壤温度、NPP和生物量共同影响着玉米生长季土壤呼吸作用的季节性变化,它们共同解释了土壤呼吸作用季节变化的93%。 小时尺度上,土环中的根系生物量是影响土壤呼吸速率空间变异的关键因子,土壤呼吸速率与根系生物量呈线性关系 ;日时间尺度上,土壤呼吸速率与根系生物量线性方程中的参数α和β是波动,土壤温度是影响α和β波动的主导因素,于是得到方程 。季节时间尺度上,土壤呼吸作用可表达为 ,土壤温度、土壤湿度和玉米NPP共同驱动着玉米生长季土壤呼吸作用的时间变化和空间变异,它们可以解释玉米生长季土壤呼吸作用时空变化的74%。 通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季根系呼吸作用占土壤呼吸作用的比例在43.1~63.6%之间波动,均值为54.5%。假定玉米果实和秸杆中的碳在收获期间没有从农田中转移走,2005年整个生长季玉米生态系统的碳收支为–1127.0 gC•m-2,碳交换速率在 0.52~-18.05 g C•m-2 •d-1 之间波动。玉米生长初期,玉米生态系统表现为C的弱碳源;玉米播种后35天一直到收获,玉米生态系统表现为碳汇。
Resumo:
陆地生态系统的呼吸作用是全球碳循环的一个主要通量和响应全球变化的一个潜在的重要正反馈机制。研究陆地生态系统的呼吸作用特征及其对生物环境因子的响应具有重要意义。本实验利用涡度相关技术对内蒙古库布齐沙漠两个不同土地利用类型的生态系统(人工种植杨树林和天然的油蒿灌丛)2006年生长季(4-10月)的生态系统呼吸特征进行比较研究,并分析了控制生态系统呼吸(Re)的生物与环境因子。结果表明:在这两种生态系统中Re存在着显著的日变化和季节变化,两个生态系统之间Re也存在着显著差异。Re日平均最大值分别2.0 mol CO2 m-2 s-1和1.7 mol CO2 m-2 s-1,都显著低于其他类似生态系统。杨树林和油蒿灌丛的生态系统Re与空气温度都表现出明显的指数相关关系,温度敏感指数Q10分别为1.11和1.12。两个生态系统的Re都与土壤水分含量呈显著的线性正相关关系,表明库布齐沙漠的生态系统的Re受到了土壤水分条件的限制。杨树林和油蒿灌丛生态系统呼吸Re都与叶面积指数的有线性回归关系,说明叶面积指数对生态系统呼吸有很好的指示作用。 本文还选择了两个生态系统内四种常见的土壤覆盖类型(分别是:杨树林生态系统的沙地SL和低洼地BL;油蒿灌丛生态系统的灌丛间BS和灌丛内WS),利用动态密闭气室测定了5-9月土壤呼吸的季节动态以及植株尺度的小尺度空间异质性。结果表明:1)不同土壤覆盖类型的土壤呼吸存在着很大的差异,其中低洼地BL和沙地SL分别有着最大和最小值,灌丛内WS的土壤呼吸要明显高于灌丛外BS。根生物量是导致它们之间差异的主要原因。2)土壤呼吸与土壤含水量之间的线性关系表明,土壤水分是两个生态系统土壤呼吸的限制因子。3)两个生态系统土壤呼吸存在着明显的小尺度差异,在靠近植株(0.5m内)地方的土壤呼吸的值明显高于距植株0.5m外的值,而0.5m外的土壤呼吸没有显著差异。小尺度土壤呼吸与根生物量之间明显的线性关系,说明根生物量是导致小尺度土壤呼吸差异的原因。本实验对沙漠生态系统的土壤呼吸和生态系统呼吸特征及其影响因子的研究,对准确的估计这一地区的碳收支有很大的帮助,为深入的理解干旱半干旱地区的生态系统碳循环提供了有价值的信息。
Resumo:
Quantitative analysis of land mammal zoogeographical regions in China and adjacent regions. Zoological Studies 43(1): 142-160. In this paper, our aim was to determine, by means of quantitative analysis, the distribution patterns of the land mammals in China and, adjacent regions using physiographical regions as operative geographical units (OGUs). Based, on the pre-sence or absence of 11 orders, 42 families, 197 genera, and 577 species of land mammals in their zoogeographical regions, which were used as OGUs, we studied the biotic boundary between the Oriental Region (OR) and the Palaearctic Region (PR), as well as subregion boundaries. The boundary's statistical significance was tested by G-test as described by McCoy et al. A significantly strong biotic boundary was found to separate the PR from the OR, and there is a weak biotic boundary in the PR, which divides it into 2 subregions. We concluded that the biotic boundary which separates the PR and OR is a strong boundary. We suggest that the Qinghai-Xizang Plateau should be regarded as a subregion of the PR, which can embody its characteristics of high elevations and a frigid climatic, which is called the Qing-Zang subregion of the PR (QZSP).
Resumo:
Hexabromocyclododecanes (HBCDs) are now emerging ubiquitous contaminants due to their wide usage, persistence and toxicities. To investigate the bioaccumulative characteristics of HBCDs, sediments, Winkle (Littorina littorea), crucian carp (Carassius carassius) and loach (Misgurnus anguillicaudatus) were collected from two streams near an E-waste dismantling site in China. and HBCD exposure test was then conducted on Chinese rare minnow. The concentration of HBCDs was 14 ng g(-1) dry weight in sediments, 186. 377 and 1791 ng g(-1) lipid weight in winkle, crucian carp and loach, respectively. gamma-HBCD was found to be the dominant diastereoisomer in the sediments (63% of total HBCDs). However, alpha-HBCD was selectively accumulated in the biotic samples and contributed to 77%, 63% and 63% of total HBCDs in winkle, crucian carp and loach, respectively. Moreover, an enrichment of (-)-enantiomers of alpha- and gamma-HBCD were found in the winkle. The reverse results were observed in the crucian carp and loach. Similar observations of diastereoisomeric and enantiomeric composition were obtained in Chinese rare minnow with those found in the crucian carp and loach. These results indicate that the freshwater species from the streams are contaminated by HBCDs. alpha-HBCD can be selectively accumulated in organisms and the accumulative characteristics are enantioselective among species. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.
Resumo:
The aim of this review is to identify problems, find general patterns, and extract recommendations for successful management using nontraditional biomanipulation to improve water quality. There are many obstacles that prevent traditional biomanipulation from achieving expectations: expending largely to remove planktivorous fish, reduction of external and internal phosphorus, and macrophyte re-establishment. Grazing pressure from large zooplankton is decoupled in hypereutrophic waters where cyanobacterial blooms flourish. The original idea of biomanipulation (increased zooplankton grazing rate as a tool for controlling nuisance algae) is not the only means of controlling nuisance algae via biotic manipulations. Stocking phytoplanktivorous fish may be considered to be a nontraditional method; however, it can be an effective management tool to control nuisance algal blooms in tropical lakes that are highly productive and unmanageable to reduce nutrient concentrations to low levels. Although small enclosures increase spatial overlap between predators and prey, leading to overestimates of the impact of predation, microcosm and whole-lake experiments have revealed similar community responses to major factors that regulate lake communities, such as nutrients and planktivorous fish. Both enclosure experiments and large-scale observations revealed that the initial phytoplankton community composition greatly impacted the success of biomanipulation. Long-term observations in Lake Donghu and Lake Qiandaohu have documented that silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) (two filter-feeding planktivorous species commonly used in management) can suppress Microcystis blooms efficiently. The introduction of silver and bighead carp could be an effective management technique in eutrophic systems that lack macrozooplankton. We confirmed that nontraditional biomanipulation is only appropriate if the primary aim is to reduce nuisance blooms of large algal species, which cannot be controlled effectively by large herbivorous zooplankton. Alternatively, this type of biomanipulation did not work efficiently in less eutrophic systems where nanophytoplankton dominated.
Resumo:
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N- or P-limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large-scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl-a)] were carried out in 45 mid-lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl-a. In separate nutrient-chl-a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl-a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl-a : TP was not influenced by TN : TP, while chl-a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a 'cut-off' TN : TP ratio to identify a limiting nutrient for a multi-species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) > 100 kg ha(-1) had significantly higher chl-a and lower Secchi depth than those with yields < 100 kg ha(-1). TP-chl-a and TP-Secchi depth relationships are not significantly different between lakes with yields > 100 kg ha(-1) or < 100 kg ha(-1). These results indicate that the fish failed to decrease chl-a yield or enhance Z(SD). Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Combined with the national standard biomonitoring method (polyurethane foam units method), calorimetry was applied to study the metabolic activities of PFU microbial communities in fresh water to determine the effects of anthropotgenic stresses on the activity of the microbial community. Comparisons were made at four sampling stations with different eutrophic status in Lake Donghu. Water quality variables, species number of protozoa, abundances of microorganisms, biomass, heterotrophy indexes and diversity indexes are reported. The heat rate-time curves of the native and concentrated PFU microbial communities were determined at 28 degrees C. Growth rate, measured maximum power output and total heat were calculated from the heat rate-time curves. The values of metabolic variables are higher at the more eutrophic stations, which suggests that organic pollution increases the activity of PFU microbial communities. The metabolic variables are in good agreement with chemical and biotic variables. And calorimetry will be useful for biomonitoring of the PFU microbial community. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
土壤呼吸在全球碳收支中占有重要的地位,笔者对草地生态系统土壤呼吸在陆地生态系统碳平衡中的作用、土壤呼吸的分类及其影响因素等方面进行了综述。结果表明,草地生态系统土壤呼吸在不同时间空间各组分所占比例不同,生物、非生物及人为活动等因素对草地土壤呼吸影响各异,主要从土壤温度、气候变暖、土壤湿度、降水、干旱化、土壤C/N等非生物因素,叶面积指数、植物光合作用、植被凋落物等生物因素以及人类干扰活动等方面具体阐述这些因素变化对土壤呼吸产生的影响,并对草地土壤呼吸的Q10值及各影响因素间的交互作用进行归纳总结。提出草地生态系统土壤呼吸研究存在的问题和今后重点发展方向,并对未来草地生态系统土壤呼吸的研究工作做了进一步的展望。
Resumo:
土壤可溶性有机物质(Dissolved organic matter,DOM)作为土壤有机质的活性组分,在陆地生态系统物质循环中扮演非常重要的角色。土壤DOM的主要成分可溶性有机碳(Dissolved organic carbon,DOC)和氮(Dissolved organic nitrogen,DON)参与C、N循环过程。为深入揭示全球C、N循环过程机制,在未开展DOC和DON的地区进行相关研究是有必要的。森林土壤(包括枯枝落叶层)DOC、DON动态及调控机理的研究是目前国际上森林生态系统C、N循环研究热点之一。本研究立足于暖温带岷江上游茂县地区人工林植被,对土壤DOC和DON的库容量,季节动态及其与其它养分之间的关系进行了系统研究,旨在了解DOC和DON在该区生态系统中的重要作用,并探讨作为DOM主要来源的叶凋落物对DOC和DON的动态影响,研究有助于更加详细地了解该区生态系统C和N循环过程。本论文主要研究结论如下: 1研究了岷江上游地区两大主要土壤类型(棕壤和褐土)不同植物群落下土壤的DOC和DON含量及特征,结果表明:DOC和DON在两种土壤类型中均有库容量存在,DOC在0-10cm和10-20cm土层的含量幅度分别111.96~159.95 mg kg-1和69.02~100.84 mg kg-1。DON在0-10cm和10-20cm土层的含量幅度分别11.88~23.08 mg kg-1和4.70~10.77 mg kg-1。游离氨基酸在0-10cm和10-20cm土层的含量幅度分别0.84~1.66 mg kg-1和0.39~0.73 mg kg-1。DOC、DON与土壤中的一些养分因子表现出了显著的相关关系,共同反映了土壤的状况和质量,在该区开展DOC和DON的系统研究是有必要的。 2 对油松与连香树林地土壤DOC、DON以及其它化学指标的季节动态进行了研究,结果表明:油松与连香树林地土壤DOC和DON的季节动态变化表现了类似的规律,DOC和DON的含量均以秋季最高。DOC和DON的季节动态变化主要受凋落物生物因素的影响,但其微生物活力的生物因素以及降雨、温度等非生物因素也是控制土壤DOC和DON含量的重要因素。土壤DON在土壤中的行为不同于矿质氮,其季节动态不同于NO3--N和NH4+-N的季节动态,在研究N循环过程中,应考虑DON的变化情况。 3 对油松与连香树林地分解层和表层土壤(0-10cm)氨基酸周转动态进行了研究,结果表明:油松林地和连香树林地均以分解层的氨基酸含量高于矿质表层土壤的含量。每个取样时期,油松林地内各层次的氨基酸含量高于连香树林地内相应层次的含量。两林地各层次无机氮含量均超过了氨基酸的含量,并且室内培养30天后无机N的含量仍然高于氨基酸的含量,所以可以认为该区立地条件下无论是在有机分解层还是矿质土层植物吸收利用的氮素仍是以无机N为主。 4 松林下松针凋落物易于累积,这与松针凋落物分解缓慢有关,从而导致松林内养分周转缓慢。通过用不同性质凋落物和灌丛地土壤构建微生态系统,比较油松、辐射松、连香树、灌丛虎榛子凋落物分解对C、N循环过程的影响,结果显示油松和辐射松针叶凋落物比连香树、虎榛子凋落物分解更慢,减缓了养分循环过程。然而将针叶凋落物与阔叶凋落物混合后,油松和辐射松针叶凋落物的分解加快,C、N元素的循环过程也加速。此结果表明在松林内维持具有高质量凋落物的灌丛植被或在松林内栽植一些阔叶树种如连香树对维持和增进松树人工林的土壤肥力有重大的作用。室内培养的结果还显示添加凋落物后土壤DOC和DON的含量显著增加,表明凋落物是土壤DOM的直接来源。然而不同物种凋落物处理下土壤DOC和DON的含量有所不同,并随时间发生改变。混合凋落物处理下土壤DOC和DON的含量均高于松针凋落物单独处理下土壤DOC和DON的含量。DON是一个主要的水溶性N库,随时间的变化趋势与无机N的变化趋势不同,在土壤N循环过程中起到了中间N库的作用。 As a labile fraction of soil organic matter, dissolved organic matter (DOM) plays a very important role in material cycling of terrestrial ecosystem. The turnover of DOM is now being considered as main components in nutrient cycling. DOM mainly includes dissolved organic carbon (DOC), -nitrogen (DON), -phosphorous (DOP) and –sulfur (DOS). Among these constituents, DOC and DON directly participate in C and N cycling. It is essential to study DOC and DON dynamics and their controlling factors in the areas where no related study has ever been carried out. Study about them can provide data supports on understanding the mechanism of the global C and N cycling. DOC and DON dynamics and their controlling factors have been focused on in the research of C and N cycling of forest ecosystems. Based on forest plantations of Maoxian, Minjiang River in warm temperate zone, soil DOC and DON pool size, their seasonal dynamics, and the correlation between DOC, DON and other nutrients were studied in order to understand the importance of DOC and DON in the study area. Soil DOC and DON dynamics induced by leaf litter decomposition were also studied. The study contributed to comprehensively understanding C and N cycling processes and providing baseline data for including DOC and DON into the indices system of evaluating nutrient conditions. The results were as follows: 1 Several different plant communities under brown soil and Cinnamon soil were chosen as sampling plots. The contents and features of soil DOC and DON were evaluated. The results showed that DOC and DON were present under the two soil types. DOC contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 111.96 mg kg-1to 159.95 mg kg-1, and 69.02 mg kg-1 to 100.84 mg kg-1. DON contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 11.88 mg kg-1to 23.08 mg kg-1, and 4.70 mg kg-1 to 10.77 mg kg-1. Free amino acid contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 0.84 mg kg-1to 1.66 mg kg-1, and 0.39 mg kg-1 to 0.73 mg kg-1. Significant correlations were found between DOC, DON and some nutrient indices, which together reflected soil condition and quality. It was hence essential to study DOC and DON in the study area. 2 Seasonal dynamics of DOC, DON, inorganic N, microbial biomass C and N were studied under Pinus tabulaeformis and Cercidiphyllum japonicum plantation. The results indicated that seasonal dynamics of soil DOC and DON under the two plantations performed similar change pattern, with the highest values in autumn. The seasonal dynamics of soil DOC and DON were mainly influenced by the litterfall. However, biotic factors such as soil microbial activities and abiotic factors such as precipitation and temperature also controlled the dynamics of soil DOC and DON. The seasonal dynamic of DON was different from that of NO3--N and NH4+-N, which showed that the behavioral differences between DON and inorganic nitrogen. And hence, it was proposed to include DON into soil N cycling in the study area. 3 Amino acid dynamics in Oa and topsoil (0-10 cm) under P. tabulaeformis and C. japonicum plantation were studied. The results showed that amino acid content in Oa was significantly higher than that in mineral soil. At each sampling time, significantly higher amino acid contents were found in P. tabulaeformis plantation than in C. japonicum plantation. The content of inorganic nitrogen was much higher than the content of amino acid in each sampling layer at each sampling time. After a 30-days laboratory incubation the content of amino acid was still lower than the content of inorganic nitrogen. The results implicated that the form of N absorbed by plants in these study sites were mainly inorganic nitrogen. 4 Usually needle litter is more resistant to decomposition, which leads to needle litter accumulation in pure coniferous stands and slows down the rate of nutrient circulation. By constructing microcosms with local shrubland soil and containing the four single-species (P. tabulaeformis, P. radiata, C. japonicum, Ostryopsis davidiana) litters, the decomposition rates and related C and N dynamics of needle litters and broadleaved litters during the early stage were compared. The results showed that the decomposition rates of pine needles were lower than those of broadleaved litters, which descended C and N cycling processes. However, the presence of C. japonicum or O. davidiana litter into pine needles increased the decomposition rates of pine needles and also dramatically promoted C and N cycling processes. It should be appropriate for plantation managers to consider C. japonicum as an ameliorative species or remain O. davidiana in pine plantations to improve soil conditions and help maintain soil fertility. The laboratory incubation still showed that DOC and DON contents in all litter-amended treatments were significantly higher than no litter-amended treatment, which proved that litter could be a direct source of DOM in soils. Different species litters induced different soil DOC and DON contents, which correspondingly changed over time. DOC and DON contents in mixed litter treatments were higher than those in pine needle litter treatments. As a major soluble N pool, DON developed a different changing pattern over time compared with inorganic N and played a role of interim N pool in soil N cycling.
Resumo:
植物生长和生产力受到自然界各种形式的生物和非生物胁迫因子的影响。这些胁迫包括低温、高温、盐碱、干旱、洪水、重金属、虫害、病害和紫外线辐射等等。而人类活动大大加剧了这些胁迫所带来的影响。由于人类污染而导致臭氧层衰减以及由此产生的地球表面紫外辐射增强已经成为全球气候变化的一个主要方面。UV-B胁迫,甚至当前的辐射水平,所带来的影响已经引起科学工作者的广泛关注。 为了生存和繁殖,植物不得不面临环境中各种潜在胁迫所带来的负面影响。然而,植物生活型的不可移动性决定了其逃避胁迫的局限性。因此,绝大多数植物都是通过对胁迫作出反应,通过修复或者更新组织来降低伤害。而植物应对环境变化的能力则是由其生长模式的种属特异性和本身的遗传组成所决定。在自然界,植物常常同时面临多种胁迫,这些胁迫所引发的植物反应可能具有叠加、协同或者拮抗作用。沙棘是一种具刺、具有固氮功能的多年生雌雄异株灌木,广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文采用沙棘作为模式植物,试图探索木本植物对低温,UV-B辐射增强以及其与干旱的复合胁迫的响应以及沙棘对这些胁迫响应是否具有种群差异性。 对来自南北两个种群的沙棘进行短日照和低温处理,检测了其在抗寒锻炼和抗寒性发育过程中存在的性别差异。结果表明,短日照和低温都分别能够诱导抗寒锻炼的发生,而两者同时存在对所有实验植株抗寒性的大小具有叠加效应。然而,短日照和低温所诱导的抗寒性在两个种群中都具有性别差异性,雄性植株比雌雄植株对短日照和低温更为敏感。同时,南北种群间也存在差异性,北方种群的植物比南方种群的植物对短日照和低温敏感,从而在短日照下抗寒锻炼的发生时间更早,低温诱导的抗寒性更大。短日照和低温诱导植物增加抗寒性的同时伴随着脱落酸的变化。脱落酸的变化因处理,种群和性别的不同而不同。这些生理反应表明不同的沙棘种群,不同的植株性别对同一环境胁迫可能存在不同的生存策略。 比较了来自高低两个海拔的沙棘种群对于干旱和UV-B辐射增强以及两者复合胁迫条件下的生理生态反应。干旱使两个种群中植株总的生物量,总叶面积,比叶面积,叶片含碳量,含磷量,木质素含量和碳氮比显著降低,使根冠比,粗根细根比和叶片脱落酸含量显著增加。干旱而非UV-B使得δ13C 值显著增加。但是,比较而言,来自高海拔的种群对干旱反应更为强烈,而来自低海拔的种群对UV-B更敏感。在UV-B辐射增强的处理下,干旱所诱导的脱落酸的积累被显著抑制。而且我们检测到在一些指标上存在显著的干旱×UV-B交互作用,如两个种群中在总生物量上,低海拔种群中在总叶面积,粗根细根比上,高海拔种群中在比叶面积,δ13C值,木质素含量上都存在明显的交互作用。这些结果表明这两个种群对胁迫具有不同的适应性反应,来自高海拔的种群比来自低海拔的种群更能够抵御干旱和UV-B胁迫。 室外实验表明,UV-B 去除/增补对沙棘高低两个海拔种群的影响都不大。对生物量的积累,植株高度以及一些常见的胁迫反应生理指标比如丙二醛、ABA 和游离脯氨酸都没有显著影响。UV-B 的效应比UV-A 大,植物反应在无UV 和仅有UV-A 的处理间没有什么区别。然而,UV-B 去除的两个处理和UV-B 存在的两个处理间存在显著区别。UV-B 使得两个种群都显著降低了比叶面积(SLA),但却使长期用水效率增加。但UV-B对光合色素和光合系统II 的影响不大。总体看来,来自低海拔的种群对UV-B 更为敏感。 Plant is adversely affected by various abiotic and biotic stress factors. These stressors includelow temperature, heat, salt, drought, flooding, heavy metal toxicity, wounding by herbivores,infecting by pathogenic microorganisms, ultraviolet (UV) radiation and so on. Variousanthropogenic activities have accentuated the existing stress factors. One of the mostimportant aspects of global change is that of stratospheric ozone depletion caused by seriousanthropogenic pollution and the resulting increase in UV radiation reaching the surface of theEarth. Scientists have become concerned about the effects that considerable UV-B stress, evenat current levels. In order to survive and reproduce, plants have to be able to cope with lots of potentiallyharmful stress factors that are almost constantly present in their environment. Most plants’responses under stress are to neutralize the stress, repairing the damage or regrowing newtissue rather than to avoid it due to their sessile life style. The plant defense capacity dependson plant-specific modular growth patterns and genetic make-up that allows for flexibleresponses to changing environments. Plants usually encounter several stresses simultaneouslyunder field conditions, and the stresses may cause a variety of plant responses, which can beadditive, synergistic or antagonistic. Sea buckthorn (Hippophae rhamnoides L.), a thorny nitrogen fixing deciduously perennialshrub, which is widely distributed throughout the temperate zones of Asia and Europe and thesubtropical zones of Asia at high altitudes. It has been widely used in forest restoration as thepioneer species in China. In this paper, we used sea buckthorn as a model, tried to get some understand of how plants fight low temperature, enhanced UV-B radiation level and thatcombination of drought. And also, want to know whether does there exist some populationspecific responses to such stressors. Sexual differences in cold acclimation and freezing tolerance development of two contrastingsea buckthorn (Hippophae rhamnoides L.) ecotypes from northern and southern regions inChina were recorded after exposure to short day photoperiod (SD) and low temperature (LT).The results demonstrated that cold acclimation could be triggered by exposing the plants toSD or LT alone, and that a combination of both treatments had an additive effect on freezingtolerance in all plants tested. However, development of freezing tolerance was dependent onthe sex of plants under SD and LT, the males were clearly more responsive to SD and LT thanthe females in both ecotypes studied. On the other hand, development of freezing tolerancewas also ecotype-dependent, the northern ecotype was more responsive to SD and LT than thesouthern ecotype, resulting in earlier cold acclimation under SD and higher freezing toleranceunder LT. Moreover, development of freezing tolerance induced by SD and LT wasaccompanied by changes in ABA levels. These alterations in ABA levels were different indifferent treatments, ecotypes and sexes. Therefore, the differences in SD and LT-inducedphysiological responses showed that the different ecotypes and the different sexes mightemploy different survival strategies under environmental stress. Two contrasting populations from the low and high altitudinal regions were employed toinvestigate the effects of drought, UV-B and their combination on sea buckthorn. Droughtsignificantly decreased total biomass, total leaf area, specific leaf area,leaf carbon (C),phophous (P), lignin content and the ratio of C: N in both populations, and increasedroot/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA), in bothpopulations. Drought but not UV-B resulted in significantly greater carbon isotopecomposition (δ13C) values in both populations. However, the high altitudinal population wasmore responsive to drought than the low altitudinal population. The drought-inducedenhancement of ABA in the high altitudinal population was significantly suppressed in thecombination of drought and elevated UV-B. Moreover, significant drought × UV-B interactionwas detected on total biomass in both populations, total leaf area and fine root/coarse root inthe low altitudinal population, specific leaf area, δ13C value and leaf lignin content in the high altitudinal population. These results demonstrated that there were different adaptive responsesbetween two contrasting populations, the high altitudinal population exhibited highertolerance to drought and UV-B than the low altitudinal population. A field experiment was conducted to investigate effects of UV-B exclusion/supplementationon two altitudinal populations of sea buckthorn. UV-B exclusion or supplementation had littleeffects on both populations investigated. For instance, the total biomass, plant height andsome physiological index such as Malondialdehyde (MDA), ABA and free proline were notchanged significantly. The UV-B effects are more significant than that of UV-A, nodifferences were found between treatments of excluded UV and excluded UV-B. However,compared with treatments of UV-B exclusion (including absent of UV-B and all UV band),the present of UV-B (including near ambient environment and enhanced UV-B) significantdecreased specific leaf area, and increased long time water use efficiency as evaluated by δ13Cvalue. UV-B had little effects on photosynthetic pigments and Photosystem II (PSII). The lowaltitude population is more sensitive to UV-B than that of the high altitude population.
Resumo:
雌雄异株植物对环境的不同响应一直是一个有趣而新颖的研究领域,由于雌雄个体不同的繁殖成本及不同的生存策略,使得雌雄植株在生长、存活、生殖格局、空间分布、资源配置等方面已经表现出明显的不同,在生理和分子水平上也表现出明显的性别间差异。干旱是制约农林业发展的环境因子之一,叶锈病是对杨树危害最严重的病害之一,由于长期进化的结果,不同性别的植物必然对生物和非生物胁迫有着不同的响应。本文以雌雄异株的青杨为模式植物,研究雌雄间在生理、生化、亚细胞结构和蛋白质水平上对生物和非生物胁迫的差异响应。主要研究结果如下: (1) 青杨雌雄植株对锈病胁迫的生理生化差异响应 在正常的对照组中,雄株叶片比雌株叶片有着较高的活性氧自由基产生速率、较高的SOD、POD、PPO 和较低的CAT 活性;在锈病感染的早期阶段, SOD、POD、CAT 活性、活性氧自由基产生速率、H2O2 含量、膜脂过氧化程度和细胞膜的电渗率在雌雄株中都增加,而PPO 仅在雄株中增加明显,APX 仅在雌株中增加明显,并且雌株比雄株有着更严重的锈病感染程度、细胞膜的伤害程度和光合系统II 的破坏程度,雌株有更多的净光合速率、气孔导度和叶绿素a 含量的降低,在同工酶变化上,雌雄间对锈病也显示出不同的表达模式。结果显示,雄株比雌株对锈病有着更好的抗性和更有效的ROS 清除系统。 (2) 青杨雌雄植株对干旱胁迫的生理生化及亚细胞结构的差异响应 与较好水分条件相比,干旱下雄株比雌株有着更高的A-Ci 响应参数,如Rubisco 最大羧化速率、光呼吸速率、暗呼吸速率和最大电子传递速率等。干旱显著地增加了膜脂过氧化程度和游离脯氨酸含量,并且雄株比雌株表现出较低的膜脂过氧化程度,较高的总蛋白和游离脯氨酸含量。无论是中度干旱还是极度干旱,除了CAT 外,雄株比雌株表现为较强的抗氧化酶活性,在同工酶谱带上,雌雄间表现出不同的变化模式,并且有些条带是干旱影响应的,而有些条带是性别特异性的,这些性别特异性条带能够作为鉴定性别快速而准确的标记。干旱显著地影响了线粒体、叶绿体和细胞壁的结构,尤其在中度干旱胁迫下,雄株线粒体和叶绿体比雌株呈现出较好的完整性,并且雄株细胞壁要比雌株更厚。因此, 雄株比雌株表现出更强的干旱忍耐性和更高效的抗氧化酶系统。 (3) 青杨雌雄植株对干旱胁迫的蛋白质组差异响应 用双相电泳检测到雌雄间近1000 个蛋白点,通过对比发现对照组雌雄间有54 个差异蛋白点,干旱下雌雄间有108 个差异点,其中102 个被质谱成功鉴定。对照组雌雄间的差异蛋白主要集中在与光合作用相关蛋白、抗氧化酶、胁迫防御蛋白和一些调节基因表达的蛋白;干旱胁迫下雌雄间差异蛋白明显增多,主要有参与信号转导、调节基因表达、蛋白质加工、转录产物的转录翻译后修饰的调节性蛋白蛋白和参与氧化还原平衡、抗胁迫、细胞壁合成、光合作用、能量代谢、氨基酸代谢和脂肪酸代谢等的功能性蛋白。干旱下这些蛋白的表达量在雌雄中有的表现出相同的表达模式,如干旱下雌雄株中Rubisco 激活酶、小热激蛋白等表达都增加,而有的表现出相反的表达模式,如Rubisco 大亚基的降解片段、羰酸酯酶等在雄株中表达量上调而在雌株中却是下调。因此,雌雄间在蛋白质水平上对干旱胁迫响应的差异是显著的,也是复杂的。 It is an interesting and novel topic that dioecious plants possess different responses to environmental stress. As for the different productive cost and different survive strategy, different sexual plants have shown obviously morphological, physiological and molecular differences. Drought is one of the most worldwidely important environmental stress factors that limit plant growth and ecosystem productivity. Rust disease is one of the economically important diseases in many trees. As a result of the long evolutionary process, male and female plants should show different responses to abiotic and biotic stress. In this paper, using a dioeious tree of Populus cathayana Rehd as a model, we study the sexual differences to drought and rust disease stress in physiological, biochemical, sub-cellular and proteomics levels. The main results are follows: (1) The sexual differences in physiology and biochemistry of poplar to rust disease In controls, males showed higher production of superoxide radicals, higher activities of SOD, POD, PPO and lower CAT activity. Under rust disease, the activities of antioxidant, the content of ROS and the degree of cellular member destroyed were increased in both sexes, except for PPO in diseased males and APX in diseased females. However, females showed more seriously disease severity and cellular member and PS II destroyed degrees. Net photosynthesis rate, transpiration rate and chlorophyll a content were decreased more in diseased females than in males. There were also some different changes inantioxidant isozymes under rust disease. The results suggested that male poplar possessed a more effectively antioxidant system and were more resistant to rut disease than females. (2) The sexual differences in physiology and biochemistry of poplar to drought stress Under drought stress, there were higher rates of RuBP-saturated CO2 assimilation, dark respiration, photorespiratory release of oxygen, the max electron transportrate in CO2-saturated and carboxylation efficiency in males than in females. And males showed lower TBARS and higher proline content. Except for CAT, the activities of other antioxidants were higher in males than in females. Meanwhile, there were obviously differences in isozyme changes between teo sexes. Drought stress obviously destroyed the integralities of chloroplasts and mitochondria and the sexual differences in sub-cellular level were obviously under the moderate water stress. Male cell walls were more sensitive to drought stress than did female. The results suggested males were more resistant to drought stress. (3) The sexual differences in proteomics of poplar to drought stress By 2-D and MS analysis, we identified 102 different protein spots between males and females. Under control conditions, the different proteins were mainly in photosynthesis related proteins, antioxidants, stress response proteins and some gene expression related proteins. Under drought stress, the different proteins were focused on (i) regulated proteins such as signaling conduction, kinase, HSP, gene expressional regulation and protein modification, (ii) functional proteins such as photosynthesis, energy metabolism, antioxidant, redox, stress response, lipid metabolism and amino acid metabolism. Some protein showed the same expressional pattern, while some showed contrary expressional pattern. Thus, the results suggested that sexual differences in proteomics were significant and complex.
Resumo:
The study of root exudates enriches the theories and methods of rhizospheric soil ecology, and offers theory warranty that it can be used in agriculture and forest. This paper discusses the types and components of root exudates, mechanism of exudation, and the relationship between root exudates and the biotic and environmental factors. The development tendency and study aspect of root exudates in the future was evaluated as well.
Resumo:
The structural properties for various SiCO isomers in the singlet and triplet states have been investigated using CASSCF methods with a 6-311 +G* basis set and also using three DFT and MP2 with same basis set for those systems except for the linear singlet state. The detailed bonding character is discussed, and the state-state correlations and the isomerization mechanism are also determined. Results indicate that there are four different isomers for each spin state, and for all isomers, the triplet state is more stable than the corresponding singlet state. The most stable is the linear SiCO ((3)Sigma(-)) species and may be refer-red to the ground state. At the CASSCF-MP2(full)/6-311+G* level, the state-state energy separations of the other triplet states relative to the ground state are 43.2 (cyclic), 45.2 (linear SiOC), and 75.6 kcal/mol (linear CSiO), respectively, whereas the triplet-singlet state excitation energies for each configuration are 17.3 (linear SiCO), 2.2 (cyclic SiCO), 10.2 (linear SiOC), and 18.5 kcal/mol (linear CSiO), respectively. SiCo ((3)Sigma(-)) may be classified as silene (carbonylsilene), and its COdelta- moiety possesses CO- property. The dissociation energy of the ground state is 42.5 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and falls within a range of 36.5-41.5 kcal/mol at DFT level, and of 23.7-28.9 kcal/mol at the wave function-correlated level, whereas the vertical IP is 188.8 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and is very close to the first IP of Si atom. Three linear isomers (SiCO, SiOC, and CSiO) have similar structural bonding character. SiOC may be referred to the iso-carbonyl Si instead of the aether compound, whereas the CSiO isomer may be considered as the combination of C (the analogue of Si) with SiO (the analogue of CO). The bonding is weak for all linear species, and the corresponding potential energy surfaces are flat, and thus these linear molecules are facile. Another important isomer is of cyclic structure, it may be considered as the combination of CO with Si by the side pi bond. This structure has the smallest triplet state-singlet state excitation energy (similar to2.2 kcal/mol); the C-O bonds are longer, and the corresponding vibrational frequencies are significantly smaller than those of the other linear species. This cyclic species is not classified as an epoxy compound. State-state correlation analysis and the isomerization pathway searches have indicated that there are no direct correlations among three linear structures for each spin state, but they may interchange by experiencing two transition states and one cyclic intermediate. The easiest pathway is to break the Si-O bond to go to the linear SiCO, but its inverse process is very difficult. The most difficult process is to break the C-O bond and to go to the linear CSiO.