88 resultados para Auto-image
Resumo:
Our study of a novel technique for adaptive image sequence coding is reported. The number of reference frames and the intervals between them are adjusted to improve the temporal compensability of the input video. The bits are distributed more efficiently on different frame types according to temporal and spatial complexity of the image scene. Experimental results show that this dynamic group-of-picture (GOP) structure coding scheme is not only feasible but also better than the conventional fixed GOP method in terms of perceptual quality and SNR. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE) array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps). A prototype chip with 64 x 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mu m Standard CMOS process. The area size of chip is 1.5 mm x 3.5 mm. Each pixel size is 9.5 mu m x 9.5 mu m and each processing element size is 23 mu m x 29 mu m. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.
Resumo:
In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.
Resumo:
This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
A 3(rd) order complex band-pass filter (BPF) with auto-tuning architecture is proposed in this paper. It is implemented in 0.18um standard CMOS technology. The complex filter is centered at 4.092MHz with bandwidth of 2.4MHz. The in-band 3(rd) order harmonic input intercept point (IIP3) is larger than 16.2dBm, with 50 Omega as the source impedance. The input referred noise is about 80uV(rms). The RC tuning is based on Binary Search Algorithm (BSA) with tuning accuracy of 3%. The chip area of the tuning system is 0.28 x 0.22 mm(2), less than 1/8 of that of the main-filter which is 0.92 x 0.59 mm(2). After tuning is completed, the tuning system will be turned off automatically to save power and to avoid interference. The complex filter consumes 2.6mA with a 1.8V power supply.
Resumo:
A 3(rd) order complex band-pass filter (BPF) with auto-tuning architecture is proposed in this paper. It is implemented in 0.18 mu m standard CMOS technology. The complex filter is centered at 4.092MHz with bandwidth of 2.4MHz. The in-band 3(rd) order harmonic input intercept point (IIP3) is larger than 19dBm, with 50 Omega as the source impedance. The input referred noise is about 80 mu V-rms. The RC tuning is based on Binary Search Algorithm (BSA) with tuning accuracy of 3%. The chip area of the tuning system is 0.28x0.22mm(2), less than 1/8 of that of the main-filter which is 0.92x0.59mm(2). After tuning is completed, the tuning system will be turned off automatically to save power and to avoid interference. The complex filter consumes 2.6mA with a 1.8V power supply.
Resumo:
The goal of image restoration is to restore the original clear image from the existing blurred image without distortion as possible. A novel approach based on point location in high-dimensional space geometry method is proposed, which is quite different from the thought ways of existing traditional image restoration approaches. It is based on the high-dimensional space geometry method, which derives from the fact of the Principle of Homology-Continuity (PHC). Begin with the original blurred image, we get two further blurred images. Through the regressive deducing curve fitted by these three images, the first iterative deblured image could be obtained. This iterative "blurring-debluring-blurring" process is performed till reach the deblured image. Experiments have proved the availability of the proposed approach and achieved not only common image restoration but also blind image restoration which represents the majority of real problems.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.