101 resultados para Austin, H.W.
Resumo:
A high-power ytterbium-doped fiber laser (YDFL) with homemade double-clad fiber (DCF) is introduced in this letter. The geometric parameter and laser characteristics of the fiber have been studied. With one-end-pumping scheme, pumped by a high-power laser diode with launching power of 280 W, a maximum continuous wave (CW) output of 110 W is obtained with an optical-to-optical efficiency of 40%.
Resumo:
In this article, we report an all-fiber master oscillator power amplifier (MOPA) system, which can provide high repetition rate and nanosecond pulse with diffraction-limit. The system was constructed using a (2 + 1) X 1 multimode combiner. The Q-Switched, LD pumped Nd:YVO4 solid-state laser wets used (is master oscillator. The 976-nm fiber-coupled module is used as pump source. A 10-m long China-made Yb3+-doped D-shape double-clad large-mode-area fiber was used as amplifier fiber. The MOPA produced as much as 20-W average power with nanosecond pulse and near diffraction limited. The pulse duration is maintained at about 15 its during 50-175 kHz. The system employs a simple and compact architecture and is therefore suitable for the use in practical applications such as scientific and military airborne LIDAR and imaging. Based oil this system. the amplification performances of. the all fiber amplifier is investigated. (C) 2008 Wiley Periodicals, Inc.
Resumo:
By use of a laser diode as a pump source, a self-Q-switched laser from a Cr,Nd:YAG crystal is demonstrated. The output Q-switched traces are very stable, the threshold pump power is 3.5 W, the pulse duration is 50 ns, and the slope efficiency is as high as 20%. In addition, the pulse width remains constant while the pulse repetition rate Varies with pump power. (C) 2000 Optical Society of America OCIS codes: 140.0140, 140.2020, 140.3380, 140.3480, 140.3540, 140.3580.
Resumo:
Single-frequency output power of 7.3 W at 2.09 mu m from a monolithic Ho:YAG nonplanar ring oscillator (NPRO) is demonstrated. Resonantly pumped by a Tm-doped fiber laser at 1.91 mu m, the Ho:YAG NPRO produces 71% of slope efficiency with respect to absorbed pump power and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.1. (c) 2008 Optical Society of America
Resumo:
A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x-ray resonant reflectivity and hard x-ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
通过生物信息学和系统发育学分析,研究了苦味受体和甜味/鲜味受体的进化途径。结果显示,苦味受体 和甜味/鲜味受体在进化上具有远相关,并且具有不同的进化途径,提示这可能是导致这些受体具有不同功能,传 导不同味觉的原因。
Resumo:
Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in semi-insulating (SI) 6H-SiC substrate by metal-organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Omega/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 pm x 2 nun demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 9 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Optimized AlGaN/AlN/GaN high electron mobility transistor (HEMT) with high mobility GaN channel layer structures were grown on 2-in. diameter semi-insulating 6H-SiC substrates by MOCVD. The 2-in. diameter GaN HEMT wafer exhibited a low average sheet resistance of 261.9 Omega/square, with the resistance un-uniformity as low as 2.23%. Atomic force microscopy measurements revealed a smooth AlGaN surface whose root-mean-square roughness is 0.281 nm for a scan area of 5 x 5 mu m. For the single-cell HEMTs device of 2.5-mm gate width fabricated using the materials, a maximum drain current density of 1.31 A/mm, an extrinsic transconductance of 450 mS/mm, a current gain cutoff frequency of 24 GHz and a maximum frequency of oscillation 54 GHz were achieved. The four-cell internally-matched GaN HEMTs device with 10-mm total gate width demonstrated a very high output power of 45.2 W at 8 GHz under the condition of continuous-wave (CW), with a power added efficiency of 32.0% and power gain of 6.2 dB. To our best knowledge, the achieved output power of internally-matched devices are the state-of-the-art result ever reported for X-band GaN-based HEMTs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.