24 resultados para Augmented Lagrangian method
Resumo:
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time steps n and n + 1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.
Resumo:
An augmented immersed interface method (IIM) is proposed for simulating one-phase moving contact line problems in which a liquid drop spreads or recoils on a solid substrate. While the present two-dimensional mathematical model is a free boundary problem, in our new numerical method, the fluid domain enclosed by the free boundary is embedded into a rectangular one so that the problem can be solved by a regular Cartesian grid method. We introduce an augmented variable along the free boundary so that the stress balancing boundary condition is satisfied. A hybrid time discretization is used in the projection method for better stability. The resultant Helmholtz/Poisson equations with interfaces then are solved by the IIM in an efficient way. Several numerical tests including an accuracy check, and the spreading and recoiling processes of a liquid drop are presented in detail. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.
Resumo:
A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer) waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction. Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory agreement is achieved with the existing asymptotical theories. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The Taylor series expansion method is used to analytically calculate the Eulerian and Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correlation functions can be obtained from the series expansions. Especially, the propagation velocity and sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities mainly determine the space-time correlations.
Resumo:
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid-scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
Resumo:
Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical model always stable for any Courant number, and which saves CPU time. To illustrate the efficiency of the characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized test cases on a sphere in the Yin-Yang grid system.