28 resultados para Apple -- Harvesting
Resumo:
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.
Resumo:
The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.
Resumo:
The main light-harvesting chlorophyll a/b -protein complex (LHC II) has been isolated directly from thylakoid membranes of shiphonous green alga, Bryopsis corticulans Setch. by using two consecutive runs of anion exchange and gel-filtration chromatography. Monomeric and trimeric subcomplexes of LHC 11 were obtained by using sucrose gradient ultracentrifugation. Pigment analysis by reversed-phase high performance liquid chromatography showed that chlorophyll a (Chl a), chlorophyll b (Chl b), neoxanthin, violaxanthin and siphonaxanthin were involved in LHC 11 from B. corticulans. The properties of electronic transition of monomeric LHC II showed similarities to those of trimeric LHC II. Circular dichroism spectroscopy showed that strong intramolecular interaction of excitonic dipoles between Chl a and between Chl b exist in one LHC II apoprotein, while the intermolecular interaction of these dipoles can be intensified in the trimeric structure. The monomer has high efficient energy transfer from Chl b and siphonaxanthin to Chl a similarly to that of the trimer. Our results suggest that in B. corticulans, LHC II monomer has high ordered pigment organization that play effective physiological function as the trimer, and thus it might be also a functional organization existing in thylakoid membrane of B. corticulans.
Resumo:
The main chlorophyll a/b light-harvesting complex (LHC 11) has been isolated directly from thylakoid membranes of marine green alga (Bryopsis corticulans Setch.) by two consecutive runs of anion exchange and gel-filtration chromatography. LHC 11 proteins in the membrane extracts treated with 3% n-Octyl-b-D-glucopyranoside (OG) obtained specific binding ability on Q Sepharose column, and thus were isolated from the thylakoid membranes in a highly selective fraction. The monomeric, trimeric and oligomeric subcomplexes of LHC 11 have been obtained by fractionation of the LHC 11 mixes with sucrose density gradient ultracentrifugation. The SDS-PAGE analysis of peptide composition and absorption spectrum showed that LHC 11 monomers, trimers and oligomers prepared through this work were intact and in high purity. Our report is the first to show that it is possible to purify LHC If directly from thylakoid membranes without extensively biochemical purification.
Resumo:
peptide composition and arrangement of 4 major light-harvesting complexes LHCP1-3 and LHCP3, isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP1 showed five main peptides, 34.4, 31.5, 29.5, 28.2 and 26.5 kD in SDS-PAGE, the 34.4 and 31.5 kD peptides were never found in higher plants. LHCP3 contained the other four kinds of LHCP1 peptides except 34.4 kD, while LHCP3, consisted of only 28.2 and 26.5 kD peptides. We found that 34.4, 28.2 and 26.5 kD peptides were easy to decompose from LHCP1 when subjected to SDS-PACE without pretreatment. They might be located at the exterior of LHCP1, while the 31.5 and 29.5 kD peptides were at the central part. The 28.2 and 26.5 kD peptides often occurred in CPa, the center complex of PS II. They are possibly the LHC II peptides tightly associated with CC II. According to the results described above, a peptide map of LHCP1 was sketched.
Resumo:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
高等植物光系统II的捕光天线蛋白(LHC II)在光能的吸收、传递和调节激发能在两个光系统之间的分配以及维持类囊体膜的垛叠等方面都起着重要的作用,因而得到了广泛的研究。目前普遍认为LHC II在植物体内是以三聚体的形式存在并行使功能的,但也有研究者发现了单体和寡聚体等多种形式的LHC II。本论文以菠菜为研究对象,采用改进的方法从类囊体膜中提取纯化了LHC II三聚体,对膜脂和色素在三聚体形成和蛋白空间结构中的影响,以及不同聚集态LHC II组成、结构和功能的差异进行了较系统的研究。此外,还将Lhcb2基因反向插入到烟草中,利用转基因植物来研究其生理功能。获得了如下结果: 1,采用改进的方法从菠菜类囊体膜中分离纯化了LHC II。与改进前比,其流程可以缩短2小时且产率也有明显的提高。SDS变性电泳和Triton X-100非变性电泳的检测结果表明,此样品纯度较高,是由三条分子量分别为29KD、28KD和26KD的多肽组成的异质三聚体。同时样品的吸收光谱和荧光光谱分析结果也与前人的报道一致。 2,分析了LHC II三聚体中的膜脂和脂肪酸组成及含量。与PSII相比,LHC II含有相同的四种膜脂:MGDG、DGDG、PG和SQDG。但LHC II中PG的含量是PSII的两倍,说明PSII中的PG主要富集在外周天线区域。同时PG中含有特异的反式十六碳一烯酸,且含量很高。用专一消化PG上Sn-2位脂肪酸链的磷脂酶A2(PLA2)处理LHC II三聚体,然后再加入PG重组的方法证明了含十六碳一烯酸的PG在三聚体结构的维持中起着至关重要的作用。去掉PG后, LHC II三聚体的结构受到了影响,部分解聚成了单体,同时其光谱特性也发生了变化,表现为叶绿素b分子的吸收峰及其激发的荧光发射峰都明显下降。回加PG则可使解聚的单体又重新聚集成三聚体。 3,分别用电洗脱和蔗糖密度梯度离心两种方法分离了LHC II三聚体、二聚体和单体。两者比较,电洗脱对样品的破坏较大,而蔗糖密度梯度离心更加温和,对蛋白上结合的色素影响不大。系统研究了不同聚集态LHC II的组成和光谱特性后发现,三种聚集态的LHC II有相同的多肽组成,并且都结合着5种色素,但是色素的含量差异较大。二聚体和单体中,叶绿素b和类胡萝卜素分子的含量比三聚体的低很多,此外,单体叶绿素a分子的含量也明显减少。对三种聚集态LHC II的各种光谱特性进行分析的结果表明,由于叶绿素b和类胡萝卜素分子含量较少,二聚体和单体中叶绿素b和类胡萝卜素的吸收均有所下降,而且从类胡萝卜素到叶绿素b以及从叶绿素b到叶绿素a的能量传递效率都低于LHC II三聚体,总体表现为三聚体 > 二聚体 > 单体。此外,不同单体之间叶绿素a到叶绿素a的能量传递也被破坏。推测三种聚集态LHC II在吸能、传能和结构上的差异,可能是植物适应不同外界环境的一种调控机制。 4,模拟体内过程,在体外将大肠杆菌中表达的Lhcb2蛋白和色素进行重组,以此来研究色素与蛋白组装过程中蛋白二级结构和色素结合状态的变化。结果表明色素在脱辅基蛋白的体外重折叠中至关重要。在与色素重组的过程中,蛋白二级结构中-螺旋含量逐渐上升并最终接近天然水平,而无规卷曲逐渐减少。从光谱的变化可以看出,色素分子与蛋白的结合经历了一个由无序到有序的过程,色素蛋白复合物的光谱信号由弱变强,重组得到的样品与天然LHC II十分相似。 5,为了更好地研究LHC II异质三聚体中单体可能具有的独特生理功能,建立了Lhcb2基因的反义抑制植物表达载体pBI-antiLhcb2,用根癌农杆菌介导法转化烟草,获得了转基因植株。酶切和PCR鉴定证明,Lhcb2基因已经成功地插入到烟草里。进一步的分子鉴定和生理生化功能分析还在进行中。
Resumo:
应用温和、非变性的液相色谱层析技术以及蔗糖密度梯度分级分离技术,从假根羽藻类囊体膜直接分离、纯化出5种不同聚集态的光系统II捕光色素蛋白复合物(LHC II),即LHC II单体、同质三聚体、异质三聚体、寡聚体l和寡聚体2。这种分离、纯化LHC II的方法与传统的等电聚焦(IEF)电泳分离方法相比,具有蛋白质提取条件温和,纯化的蛋白质样品纯度高且数量大等优点,为进一步研究LHC II分子的晶体结构和功能创造了有利的条件。 SDS-PAGE电泳分析和MALDI-TOF质谱分析结果表明,纯化得到的LHC II单体和同质三聚体都具有一种分子量为24.3 kDa的脱辅基蛋白质,而异质三聚体和两种寡聚体除含有这个脱辅基蛋白外,还含有另一种分子量为23 kDa的脱辅基蛋白。 采用室温吸收光谱、低温荧光光谱及园二色(CD)光谱技术对LHC II单体、同质三聚体、异质三聚体、寡聚体l和寡聚体2内的叶绿素组成以及叶绿索之间的能量传递特性进行分析研究表明,在同一条组成LHC II的脱辅基蛋白多肽链上结合着Chl a二聚体,二聚体内的两个Chl a分子之间存在偶极子相互作用。在这5种LHC II亚复合物中均具有Chl a-Chl a相Chl biChl a→ Chl a能量传递途径,其中同质三聚体表现出最高的能量传递效率,而寡聚体的传能效率大大低于单体和三聚体,同时出现Chl a的淬灭现象。当LHC II脱辅基蛋白质高度聚集形成寡聚体时,其蛋白质上结合的Chlb大量减少,引起这两种寡聚体吸能和传能能力的急剧下降。 LHC II单体、同质三聚体、异质三聚体、寡聚体1和寡聚体2的二级结构数据表明,自由堆积的脱辅基蛋白的二级结构以8.折叠构象为主,当LHC II蛋白质有序聚集形成三聚体时,可能每条蛋白质多肽链上的叶绿素结合区域形成两个跨膜a-螺旋,对称排列在脂双层膜内,而非叶绿素结合区则形成一条跨膜a-螺旋。当LHC II蛋白质高度聚集形成寡聚体 时,LHC II蛋白质的二级结构似乎对其上结合着的叶绿素的影响不大,而LHC II寡聚体内蛋白质的高密度聚集引起的更高级的蛋白质相互之间的空间结构可能对叶绿素的影响起主要作用,特别是破坏Chlb结合位点。 依据上述的实验结果推测在类囊体膜内,LHC II可能通过其脱辅基蛋白聚集形式的转换,调控其光能吸收和激发能传递的过程和效率。