38 resultados para Antisense Transcription
Resumo:
Recent studies in mammals have revealed that the cyanobacterial toxin MC-LR suppresses immune functions. Nevertheless, immunotoxic effects of microcystins have been little studied in fish. In this paper, we present the profiles of the immune modulation of MC-LR in grass carp, and quantitative real-time PCR methodology was developed for the measurement of relative transcription changes of six immune-related genes in the spleen and head kidney of the grass carp Ctenopharyngodon idella, which were intraperitoneally injected with 50 mu g MC-LR center dot kg(-1) body weight in a three-week period. This study was focused exclusively on gene transcription level changes at different time points after MC-LR exposure, so, only one dose was given. The investigated genes were interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), type I interferon (Type I IFN), peptidoglycan recognition protein-L (PGRP-L), immunoglobulin M (IgM) and major histocompatibility complex class I (MHC-I) genes. The results demonstrated that the transcription levels of the TNF-alpha, type I IFN, and PGRP-L genes in the spleen and head kidney were significantly low at all time points, and those of IL-1 beta were significantly low in the head kidney at different time points. In addition, IgM and MHC-I transcription levels were only significantly low in the spleen and head kidney at 21 d postinjection. The changes in the transcription levels of immune-related genes induced by MC-LR confirmed its effect on inhibiting immune function at the transcription level.
Resumo:
Microcystins (MCs) are cyanobacterial toxins in water blooms that have received increasing attention as a public biohazard for human and animal health. Previous studies were mainly focused on the toxic effects on adult fish, rather than juvenile or larvae, and the response of fish immune system were usually neglected. This paper presents the first data of the effects of microcystin-LR (MC-LR) on transcription of several genes essential for early lymphoid development (Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha) and heat shock proteins (HSP90, HSP70, HSP60, HSP27) in zebrafish larvae. Relative changes of mRNA transcription were analyzed by real time PCR. The transcription of Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha were up-regulated when following exposure to 800 mu g/L MC-LR, which may indicate that specific lymphocytes differentiation and TCR/lg arrangement are induced to counteract the toxic effects of MC-LR. It was also interesting to note the dramatically increased transcription of HSP90. HSP70, HSP60 and HSP27, which may indicate their important roles as molecular chaperones under oxidative stress. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The glutathione S-transferases play important roles in the detoxification of microcystin. Core-sequences of three classes of GST (mu, kappa and rho) were cloned from goldfish (Carassius auratus L) i.p. injected with cyanobacterial crude extract at two doses (50 and 200 mu g MC-LReq kg(-1) BW). The relative changes of the mRNA abundance in liver, kidney and intestine were analyzed by real-time PCR. The transcription of GST mu was inhibited in intestine at both doses and the transcription of GST kappa was inhibited from 12 to 48 h in kidney at both doses. The decreased transcription of GST rho was detected in all three organs at the high dose. It is suggested that transcription inhibition of GST rho might be significant in MCs toxicity at higher toxin concentration in omnivorous freshwater fish. Alteration in transcription of GSTs stimulated by MCs implicates an increased health risk to fish. (C) 2008 Published by Elsevier B.V.
Resumo:
Heme oxygenase-1 is the rate-limiting enzyme in the degradation of heme into biliverdin, carbon monoxide and free divalent iron. In this study, we cloned heme oxygenase isoform 1 (CaHO-1) from a hypoxia-tolerant teleost fish Carassius auratus. The full-length cDNA of CaHO-1 is 1247 bp and encodes a protein of 272 amino acids. RT-PCR and real-time PCR analysis indicated that CaHO-1 was predominantly transcribed in posterior kidney, head kidney, gill and intestine, and induction of gene transcription was observed predominantly in posterior kidney under hypoxic stress. Moreover, the hypoxia-induced transcription was confirmed in goldfish larvae and in in vitro cultured CAB cells. Fluorescence of the HO-1-GFP fusion protein revealed a cytoplasmic and plasma membrane localization, which was consistent with the putative transmembrane structure. Subsequently, we established a stably transfected CAB/pcDNA3.1-HO-1 cell line and a control CAB/pcDNA3.1 cell line, and found that the number of dead cells was obviously reduced in the pcDNA3.1-HO-1-transfected group following 4 days of hypoxic (1% O-2) treatment in comparison with numerous detached dead cells in the control pcDNA3.1-transfected cells. Furthermore, a significant cell viability difference between the two kinds of transfected cells during hypoxia-reoxygenation was revealed. Therefore, the data suggest that fish HO-1 might play a significant protective role in cells in response to hypoxic stress.
Resumo:
The glutathione S-transferases are important enzymes in the microcystin-induced detoxication processes. In this experiment, we cloned the full-length cDNA of alpha, pi and theta-class-like glutathione S-transferase genes from goldfish (Carassius auratus Q. Their derived amino acid sequences were clustered with other vertebrate alpha, pi and theta-class GSTs in a phylogenetic tree and the goldfish GST sequences have the highest similarity with those from common carp and zebrafish. Goldfish were i.p. injected with microcystins extract at two doses (50 and 200 mu g kg(-1) BW MC-LReq) and the relative changes of the mRNA abundance in liver, kidney and intestine were analyzed by real-time PCR. The transcription of GST alpha was suppressed in both liver and intestine, but induced in the kidney. Decreased transcription of GST theta was detected in liver, kidney and intestine in the low-dose group. The transcription of GST pi was suppressed in liver and intestine post-injection in both dose groups. These results suggested that the transcription of GST isoforms varied in different ways within an organ and among organs of goldfish exposed to MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recent evidences suggested that oxidative stress may play a significant role in the pathogenesis of MCs toxicity. In the present study, the acute effects of microcystins on the transcription of antioxidant enzyme genes were investigated in liver of crucian carp i.p.-injected with 50 mu g MC-LReq per kg body weight (BW). We reported the cDNA sequences for four kinds of antioxidant enzyme (GSH-PX, CAT, Cu/Zn SOD, and GR) genes, and evaluated the oxidant stress induced by MCs through analyzing the transcription abundance of antioxidant enzyme genes using real-time PCR method. The time-dependent change of relative transcription abundance and expression of the antioxiclant enzyme genes were determined at 1, 3, 12, 24, and 48 h. The transcription abundance varied among antioxiclant enzymes, with GSH-PX and GR down-regulation, and CAT and SOD significantly upregulation. Based on these data, we tentatively concluded that the oxidant stress was induced by MCs, and caused the different response of the antioxiclant enzyme genes. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.
Resumo:
The genes of IRF-1 and IRF-7 have been cloned from the mandarin fish (Siniperca chuatsi). The IRF-1 gene has 4919 nucleotides (nt) and contains 10exons and 9introns, with an open reading frame (ORF) of 903 ntencoding301 aa. The IRF-7 gene has 6057 nt and also contains 10exons and 9introns, with an ORF of 1308 nt encoding 436 aa. The IRF-1 and IRF-7 genes have only one copy each in the genome. The transcription of IRF-1 and IRF-7 in different organs was analyzed by real-time PCR, and both molecules were constitutively expressed. The IRF-I and IRF-7 mRNAs were abundant in gill, spleen, kidney and pronephros. The temporal transcriptional changes for IRF-1, IRF-7 and Mx were investigated within 48 h after poly I: C stimulation in liver, gill, spleen and pronephros. An increased transcription was detected for IRF-1 and IRF-7 12 h post-stimulation, being earlier than the transcription of Mx protein; however, IRF-1 and IRF-7 transcription decreased while the Mx protein was stable at 48 h post-stimulation. (c) 2007 Published by Elsevier B.V.
Resumo:
The glutathione S-transferases play important roles in the detoxification of microcystin. In this experiment, nine glutathione S-transferase genes including cytosolic GSTs (rho, mu, theta, alpha and pi), mitochondrial GST (kappa) and microsomal GSTs (mGST1, mGST2 and mGST3) were cloned from common carp Cyprinus carpio. The mRNA abundance of each carp GST isoform in liver was analyzed by real time PCR. The relative changes after stimulation with microcystin LR were also analyzed: increased levels of transcription of GST alpha, rho and mGST3 isoforms were detected at 6 h post stimulation; the transcription of mu, theta and mGST2 isoforms were relatively stable; and all the GST isoforms except GST kappa and rho recovered to original levels compared with controls at 72 h. It is suggested that MC-LR showed different effects on the transcription of nine carp GST isoforms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The gene of interferon regulatory factor-2 (IRF-2) has been cloned from the mandarin fish (Siniperca chuatsi). The IRF-2 gene has 6,418 nucleotides (nt) and contains eight exons and seven introns, encoding two mRNAs. The two IRF-2 mRNAs each contained an open reading frame of 873 nt, which both translate into the same 291 amino acids but differed in their 5' untranslated region: one mRNA was transcribed initially from the exon 1 bypassing exon 2, while the other was transcribed from the exon 2. The microsatellites (CA repeats) could be found in the carboxyl terminal region of mandarin fish IRF-2, which result in the truncated form molecules. The microsatellites' polymorphism was investigated, and eight alleles were found in 16 individuals. The microsatellites were also examined in IRF-2 of several freshwater perciform fishes. The transcription of the IRF-2 in different tissues with or without poly inosine-cytidine stimulation was analyzed by real-time PCR, and the constitutive transcription of both molecules could be detected in all the tissues examined.
Resumo:
The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F-4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F-4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F-4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. it looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.
Resumo:
A rapid, sensitive and highly specific detection method for grass carp hemorrhagic virus (GCHV) based on a reverse transcription-polymerase chain reaction (RT-PCR) has been developed. Two pairs of PCR primers were synthesized according to the cloned cDNA sequences of the GCHV-861 strain. For each primer combination, only one specific major product was obtained when amplification was performed by using the genomic dsRNA of GCHV-861 strain. The lengths of their expected products were 320 and 223 bp, respectively. No products were obtained when nucleic acids other than GCHV-861 genomic RNA were used as RT-PCR templates. To assess the sensitivity of the method, dilutions of purified GCHV-861 dsRNA total genome (0.01 pg up to 1000 pg) were amplified and quantities of as little as 0.1 pg of purified dsRNA were detectable when the amplification product was analyzed by 1.5% agarose gel electrophoresis. This technique could detect GCHV-861 not only in infected cell culture fluids, but also in infected grass carp Ctenopharyngodon idellus and rare minnow Gobiocypris rarus with or without hemorrhagic symptoms. The results show that the RT-PCR amplification method is useful for the direct detection of GCHV.