25 resultados para Animal monitor
Resumo:
A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. Methods: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a Ge-68 point source, and a calibrated 68Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A Na-22 point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of F-18-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of F-18-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of F-18-FDG and imaged for 2 h with electrocardiogram gating. Results: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1 %. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. Conclusion: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.
Resumo:
The clinical trials of tumor therapy using heavy ions beam C-12 are now in progress at Institute of Modem Physics in Lanzhou. In order to achieve the precise radiotherapy with the high energy C-12 beam in active pencil beam scanning mode, we have developed an ionization chamber(IC) as an online monitor for beam intensity and also a dosimeter after calibration. Through the choosing of working gas and voltage, optimizing of the electrics and the read-out system, calibrating the linearity, the detector system provide us one of the simple and highly reliable way to monitoring the beam during the active pencil beam scanning treatments. The measurement results of this detector system show that it could work well under the condition of high energy C-12 beam in active pencil beam scanning mode.
Resumo:
高效率的电子冷却过程,要求电子束与离子束位置平行且重叠。为了同时测量电子束与离子束的位置,在HIRFL-CSR电子冷却装置上研发了以容性圆筒形极板为感应电极的束流位置探测系统。系统测量束流通过探针时产生的脉冲感应信号,并进行傅里叶变换得到频谱信号,分析4个不同电极上频谱信号强度获取束流的位置信息。测量结果表明,该束流位置探测系统测量准确,为定量研究储存环离子累积和电子冷却过程与两种束流相对位置及角度的依赖关系提供了条件。
Resumo:
The validation of a fully automated dissolved Ni monitor for in situ estuarine studies is presented, based on adsorptive cathodic stripping voltammetry (AdCSV). Dissolved Ni concentrations were determined following on-line filtration and UV digestion, and addition of an AdCSV ligand (dimethyl glyoxime) and pH buffer (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid). The technique is capable of up to six fully quantified Ni measurements per hour. The automated in situ methodology was applied successfully during two surveys on the Tamar estuary (south west Britain). The strongly varying sample matrix encountered in the estuarine system did not present analytical interferences, and each sample was quantified using internal standard additions. Up to 37 Ni measurements were performed during each survey, which involved 13 h of continuous sampling and analysis. The high resolution data from the winter and summer tidal cycle studies allowed a thorough interpretation of the biogeochemical processes in the studied estuarine system.
Resumo:
A microcarbon array electrode was modified by the placement of a Nafion film containing cobalt tetramethylpyridyl phorphyrin on its surface. This electrode was applied to the analysis of solution glucose when it was further modified by the immobilization of glucose oxidase on the outermost surface of the Nafion by the cross-linking of serum albumin with glutaraldehyde. The concomitant decrease in the concentration of oxygen, as it was consumed in the enzymatic reaction of glucose with glucose oxidase, was determined by either cyclic voltammetry or a double potential step method at the porphyrin-Nafion catalytic electrode. Glucose could be determined in the range of 0.01-4 mM rapidly, without interference from substances such as ascorbate or other saccharides.
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.