137 resultados para Agkistrodon contortrix contortrix venom
Resumo:
Trimeresurus stejnegeri venom, which contains TSV-PA (a specific plasminogen activator sharing 60-70% sequence homology with venom fibrinogen-clotting enzymes), also possesses fibrinogen-clotting activity in vitro. A fibrinogen-clotting enzyme (stejnobin) has been purified to homogeneity by gel filtration and ion-exchange chromatography on a Mono-Q column. It is a single-chain glycoprotein with a mol. wt of 44,000. The NH2-terminal amino acid sequence of stejnobin shows great homology with venom fibrinogen-clotting enzymes and TSV-PA. Like TSV-PA, stejnobin was able to hydrolyse several chromogenic substrates. Comparative study of substrate specificities of stejnobin and other venom proteases purified in our laboratory was carried out on five chromogenic substrates. Stejnobin clotted human fibrinogen with a specific activity of 122 NIH thrombin-equivalent units/mg protein. However, stejnobin did not act on other blood coagulation factors, such as factor X, prothrombin and plasminogen. Diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride inhibited its activity, whereas ethylenediamine tetracetic acid had no effect on it, indicating that it is a serine protease. Although stejnobin showed strong immunological cross-reaction with polyclonal antibodies raised against TSV-PA, it was interesting to observe that, unlike the case of TSV-PA, these antibodies did not inhibit the amidolytic and fibrinogen-clotting activities of stejnobin. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The hornet possesses highly toxic venom, which is rich in toxin, enzymes and biologically active peptides. Many bioactive substances were identified from wasp venom. Two families of antimicrobial peptides were purified and characterized from the venom of
Resumo:
Stejnulxin, a novel snake C-type lectin-like protein with potent platelet activating activity, was purified and characterized from Trimeresurus stejnegeri venom. Under non-reducing conditions, it migrated on a SDS-polyacrylamide gel with an apparent molecular mass of 120 kDa. On reduction, it separated into three polypeptide subunits with apparent molecular masses of 16 kDa (alpha), 20 kDa (beta(1)) and 22 kDa (beta(2)), respectively. The complete amino acid sequences of its subunits were deduced from cloned cDNAs. The N-terminal sequencing and cDNA cloning indicated that beta(1) and beta(2) subunits of stejnulxin have identical amino acid sequences and each contains two N-glycosylation sites. Accordingly, the molecular mass difference between 1 and 2 is caused by glycosylation heterogenity. The subunit amino acid sequences of stejnulxin are similar to those of convulxin, with sequence identities of 52.6% and 66.4% for the U. and beta, respectively. Stejnulxin induced human platelet aggregation in a dose-dependent manner. Antibodies against UNA inhibited the aggregation response to stejnulxin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in stejnulxin-induced platelet aggregation. Antibodies against GPIbalpha or alpha(2)beta(1) as well as echicetin or rhodocetin had no significant effect on stejnulxin-induced platelet aggregation. However, platelet activation induced by stejnulxin was blocked by anti-GPVI antibodies. In addition, stejnulxin induced a tyrosine phosphorylation profile in platelets that resembled that produced by convulxin. Biotinylated stejnulxin bound specifically to platelet membrane GPVI.
Resumo:
A novel L-amino acid oxidase, named TSV-LAO, has been purified and cloned from the snake Trimeresurus stejnegeri. Fifty percentage cytotoxic concentrations (CC50) of TSV-LAO on C8166 cells were 24 and 390 nM in the absence or presence of catalase (400nM), respectively. However, at concentrations that showed little effect on cell viability, TSV-LAO displayed dose dependent inhibition on HIV-1 infection and replication. The antiviral selectivity indexes (CC50/EC50) were 16 and 6, respectively, corresponding to the measurements of syncytium formation and HIV-1 p24 antigen expression. Interestingly, the presence of catalase resulted in an increase of its antiviral selectivity to 52 and 38. Under the same conditions, no anti-HIV-1 activity was observed by exogenous addition of H2O2. The complete amino acid sequence of TSV-LAO, as deduced from its cDNA, exhibits a high degree of sequence identity with other snake venom LAOs. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A blood coagulation factor IX-binding protein (TSV-FIX-BP) was isolated from the snake venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-FIX-BP showed a single band with an apparent molecular weight of 23,000 under non-reducing conditions. and two distinct bands with apparent molecular weights of 14,800 and 14,000 under reducing conditions. cDNA clones containing the coding sequences of TSV-FIX-BP were isolated and sequenced to determine the structure of the precusors of TSV-FIX-BP subunits. The deduced amino acid sequences of two subunits of TSV-FIX-BP were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. TSV-FIX-BP was a nonenzymatic C-type lectin-like anti-coagulant. The anti-coagulant activity of TSV-FIX-BP was mainly caused by its dose dependent interaction with blood coagulation factor IX but not with blood coagulation factor X. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A platelet glycoprotein Ib-binding protein, termed TSV-GPIb-BP, was isolated from the venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-GPIb-BP showed a single band with an apparent molecular weight of 28,000 and two distinct bands with apparent molecular weights of 16,000 and 15,000 under non-reducing and reducing conditions, respectively. cDNA clones containing the coding sequences for both TSV-GPIb-BP subunits were isolated and sequenced. The deduced amino acid sequences of TSV-GPIb-BP subunits were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. Interestingly, the a subunit of TSV-GPIb-BP is identical to that of alboaggregin-B, and the sequence identity of their beta subunits is 94.3%. TSV-GPIb-BP inhibited ristocetin-induced human platelet agglutination in platelet-rich plasma under lower dosages (<5 mug/ml). On the other hand, it directly aggregated washed human platelets in the absence of additional Ca2+ or any other cofactors under higher dosages (>5 mug/ml). This platelet aggregation activity was dose-dependently inhibited by specific GPIbalpha antibodies, but not by those antibodies against platelet GPIa, GPIIa, GPIIb and GPIIIa. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
TMVA is a C-type lectin-like protein with potent platelet activating activity from Trimeresurus mucrosquamatus venom. In the absence of von Willebrand factor (vWF), TMVA dose-dependently induced aggregation of washed platelets. Anti-GP Ib monoclonal antib
Resumo:
Group IIA secretory phospholipases A(2) (sPLA(2)-II) is generally known to display potent grampositive bactericidal activity, while group IA sPLA(2) (sPLA(2)-I) reportedly is not. In this work, a novel sPLA(2)-I named BFPA was identified from Bungarus fas
Resumo:
Hemorrhagic toxins are widely distributed in viperid and crotalid snake venoms. Envenomation of Trimeresurus stejnegeri, a member of Crotalidae family, caused potent systemic and local hemorrhage. Up to now, there is no report on hemorrhage toxins from th
Resumo:
TSV-DM, a basic metalloproteinase with a molecular weight of 110 kDa, was purified from Trimeresurus stejnegeri venom. TSV-DM degraded the A alpha chain of fibrinogen more rapidly than the B beta chain in a dose dependent manner. The cDNA of TSV-DM encode
Resumo:
A novel C-type lectin-like protein, dabocetin, was purified from Daboia russellii siamensis venom. On SDS-polyacrylamide gel electrophoresis, it showed a single band with an apparent molecular weight of 28 kDa and two distinct bands with the apparent mole
Resumo:
Wasp is an important venomous animal that can induce human fatalities. Coagulopathy is a clinical symptom after massive wasp stings, but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith). This protein, named magnvesin. contains serine protease-like activity and inhibits blood coagulation. The cDNA encoding magnvesin is cloned from the venom sac cDNA library of the wasp. The deduced protein from the cDNA is composed of 305 amino acid residues. Magnvesin shares 52% identity with allergen serine protease from the wasp Polistes dominulus. Magnvesin exerted its anti-coagulant function by hydrolyzing coagulant factors TF, VII, VIII, IX and X. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the pr
Resumo:
An L-amino acid oxidase from Ophiophagus hannah snake venom (Oh-LAAO) was purified by successive gel filtration, ion-exchange and heparin chromatography. Oh-LAAO did not induce platelet aggregation; however, it had potent inhibitory activity on platelet a
Resumo:
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibito