51 resultados para Agent-based brokerage platform
Resumo:
在激烈的市场竞争中,过程企业不仅要重视技术、更要加强管理,实现全局优化运行。提高过程企业的市场竞争能力必须全面综合集成人、组织、战略管理、经营管理、过程管理及信息自动化技术等因素。本文以石化企业为背景,对过程企业面临的问题及发展趋势进行了分析,并且对过程企业管理模式、过程企业的体系结构以及过程集成与优化技术进行了探讨。
Resumo:
:综述了多机器人系统任务规划的研究 ,介绍了基于 Agent的分布协作式多机器人装配系统 ,给出了分布式多机器人系统任务协商规划算法 ,采用了改进的合同网协议方法。针对多机器人任务规划算法的软件实现 ,采用了先进的分布式对象技术 ,介绍了算法的具体实现方法
Resumo:
本文介绍了我们建立的基于Agnet的分布协作式多机器人装配系统-DAMAS,在此基础上研究了多机器人合作的协商协议,采用了改进的合同网协议方法,针对多机器人协商协议的软件实现了,采用了应用前景广阔的分布式对象技术,介绍了机器人合作装配的协商协议的具体实现方法。
Resumo:
A mobile agent system model based on the servlet technology is presented, the constitution and working process of the system are analyzed. The implementation of key parts of this model and the current development situation as well as the development trend of mobile agent technology are introduced. The mobile agent system model enhances its internal structure recognition and facilitates the system expansion and reformation. The remotely mobile agent control method by means of the protocol modification is presented.
Resumo:
This paper attempts to develop a reduction-based model updating technique for jacket offshore platform structure. A reduced model is used instead of the direct finite-element model of the real structure in order to circumvent such difficulties as huge degrees of freedom and incomplete experimental data that are usually civil engineers' trouble during the model updating. The whole process consists of three steps: reduction of FE model, the first model updating to minimize the reduction error, and the second model updating to minimize the modeling error of the reduced model and the real structure. According to the performance of jacket platforms, a local-rigidity assumption is employed to obtain the reduced model. The technique is applied in a downscale model of a four-legged offshore platform where its effectiveness is well proven. Furthermore, a comparison between the real structure and its numerical models in the following model validation shows that the updated models have good approximation to the real structure. Besides, some difficulties in the field of model updating are also discussed.
Resumo:
Here, we report a sensitive amplified electrochemical impedimetric aptasensor for thrombin, a kind of serine protease that plays important role in thrombosis and haemostasis. For improving detection sensitivity, a sandwich sensing platform is fabricated, in which the thiolated aptamers are firstly immobilized on a gold substrate to capture the thrombin molecules, and then the aptamer functionalized Au nanoparticles (AuNPs) are used to amplify the impedimetric signals.
Resumo:
Selective extraction-separation of yttrium(Ill) from heavy lanthanides into 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim][PF6]) containing Cyanex 923 was achieved by adding a water-soluble complexing agent (EDTA) to aqueous phase. The simple and environmentally benign complexing method was proved to be an effective strategy for enhancing the selectivity of [C(n)mim] [PF6]/[Tf2N]-based extraction system without increasing the loss of [C(n)mim](+). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.
Resumo:
In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.
G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.
Resumo:
Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microfluidic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quantified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.