91 resultados para Acoustic sensing
Resumo:
A kind of 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-metallonaphthalocyanines complexes MNc(iso-PeO)(8) (M = Co, Cu, Pd) are used as spincoating film-forming materials. The surface morphologies of the films prepared were studied first. These films were then used for the experiments of NO2 sensing. The effects of sensing temperature as well as the NO concentration on the sensing properties were studied. The experimental results showed that the three MNc(iso-PeO)(8) films were uniform, smooth and dense. Due to the different metal ions (M) on the center of naphthalocyanine, the CoNc(iso-PeO)(8) film had a higher film resistance and response-recovery rate in the NO2 sensing experiments. On the contrary, the response to NO2 of the PdNc(iso-PeO)(8) and CuNc(iso-PeO)(8) films were superior to that of CoNc(iso-PeO)(8). By varying the sensing temperature, it was found that the elevation of sensing temperature could improve the sensing response, recovery ratio, and sensitivity of the sensing films. At high concentrations of NO2, the response time became shorter. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A spin-coated film of lead tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin complex (PbTAP(t-Bu)(4)) was obtained and characterized by IR spectra, absorption spectra and atomic force microscopy. The response and recovery characteristics of the film to NH3, NO2 and C2H5OH vapor were investigated at room temperature. In addition, the reversibility and stability of the film to NH3 were also studied. The results indicate that the PbTAP(t-Bu)(4) derivative can be exploited as an NH3 sensor at room temperature. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spin-coated films of nickel 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-naphthalocyanine complex were obtained and characterized by UV-vis absorption spectroscopy. A linear relationship between the absorbance and solution concentration was observed. Low concentration solutions could afford smooth and homogeneous film surfaces as indicated by atomic force microscopy. The film structure was studied by small angle X-ray diffraction. The films were used for NO2 sensing experiments. The results indicate that the elevation of sensing temperature can shorten the response time and increase recovery ratio and response magnitude of the sensing films. High NO2 concentration can also shorten response time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline La0.8Pb0.2FeO3 has been prepared by the sol-gel method. XRD patterns show that the nanocrystalline La0.8Pb0.2FeO3 is a perovskite phase with the orthorhombic structure and its mean crystallite size is about 19 nm. The influence of Pb ions which replaced the La ions on A-sites can be directly observed from the electrical and sensing properties to H-2 gas. The conductance of La0.8Pb0.2FeO3-based sensor is considerably higher than that of LaFeO3-based sensor, and Pb-doping can enhance the sensitivity to H2 gas. An empirical relationship of R = KCH2alpha with alpha = 0.668 was obtained.
Resumo:
Acid-sensing ion channels (ASICs) are emerging as fundamental players in the regulation of neural plasticity and in pathological conditions. Here we showed that lead (Pb2+), a well known neurotoxic metal ion, reversibly and concentration-dependently inhib
Resumo:
Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.
Resumo:
Acid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca2+ permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, as a result of activation of NR2B-containing N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) during ischemia. Furthermore, NR2B-specific antagonist, CaMKII inhibitor, or overexpression of mutated form of ASIC1a with Ser478 or Ser479 replaced by alanine (ASICla-S478A, ASIC1a-S479A) in cultured hippocampal neurons prevented ischemia-induced enhancement of ASIC currents, cytoplasmic Ca2+ elevation, as well as neuronal death. Thus, NMDAR-CaMKII cascade is functionally coupled to ASICs and contributes to acidotoxicity during ischemia. Specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemia and other pathological conditions involving excessive glutamate release and acidosis.
Resumo:
Development of chronic pain involves alterations in peripheral nociceptors as well as elevated neuronal activity in multiple regions of the CNS. Previous pharmacological and behavioral studies suggest that peripheral acid-sensing ion channels (ASICs) cont
Resumo:
This study has developed an improved subjective approach of classification in conjunction with Step wise DFA analysis to discriminate Chinese sturgeon signals from other targets. The results showed that all together 25 Chinese sturgeon echo-signals were detected in the spawning ground of Gezhouba Dam during the last 3 years, and the identification accuracy reached 90.9%. In Stepwise DFA, 24 out of 67 variables were applied in discrimination and identification. PCA combined with DFA was then used to ensure the significance of the 24 variables and detailed the identification pattern. The results indicated that we can discriminate Chinese sturgeon from other fish species and noise using certain descriptors such as the behaviour variables, echo characteristics and acoustic cross-section characteristics. However, identification of Chinese sturgeon from sediments is more difficult and needs a total of 24 variables. This is due to the limited knowledge about the acoustic-scattering properties of the substrate regions. Based on identified Chinese sturgeon individuals, 18 individuals were distributed in the region between the site of Gezhouba Dam and Miaozui reach, with a surface area of about 3.4 km(2). Seven individuals were distributed in the region between Miaozui and Yanshouba reach, with a surface area of about 13 km(2).
Resumo:
Cetaceans produce sound signals frequently. Usually, acoustic localization of cetaceans was made by cable hydrophone arrays and multichannel recording systems. In this study, a simple and relatively inexpensive towed acoustic system consisting of two miniature stereo acoustic data-loggers is described for localization and tracking of finless porpoises in a mobile survey. Among 204 porpoises detected acoustically, 34 individuals (similar to 17%) were localized, and 4 of the 34 localized individuals were tracked. The accuracy of the localization is considered to be fairly high, as the upper bounds of relative distance errors were less than 41% within 173 m. With the location information, source levels of finless porpoise clicks were estimated to range from 180 to 209 dB re 1 mu Pa pp at 1 m with an average of 197 dB (N=34), which is over 20 dB higher than that estimated previously from animals in enclosed waters. For the four tracked porpoises, two-dimensional swimming trajectories relative to the moving survey boat, absolute swimming speed, and absolute heading direction are deduced by assuming the animal movements are straight and at constant speed in the segment between two consecutive locations.
Resumo:
Using the Simrad EY60 split-beam echosounder, the spawning aggregation of Megalobrama hoffmanni was observed at the Luopang spawning grounds in the Pearl River, China, from April 19 to 22 2006. With the boat anchored, the transducer was stationary and was aimed horizontally to monitor the migration of the fish. Using fishery information, the echoes of M. hoffmanni were identified. The results showed that the spawning aggregation of M. hoffmanni at Luopang was obvious and easy to discriminate. The target strength of M hoffmanni in situ ranged from -33.8 dB to -52.3 dB (average 42.2dB). The aggregation of M. hoffmanni was obviously affected by light. With a speed of -0.31 m/s, 88.9% of the spawning stocks migrated upstream. Most M hoffmanni were recorded moving near the bottom. Their distinctive acoustic signature demonstrated the suitability of the stationary acoustic observation for M. hoffmanni identification and discrimination.
Resumo:
The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.