23 resultados para APPROXIMATE ENTROPY
Resumo:
We study the Hawking radiation of a (4+n)-dimensional Schwarzschild black hole imbedded in space-time with a positive cosmological constant. The greybody and energy emission rates of scalars, fermions, bosons, and gravitons are calculated in the full range of energy. Valuable information on the dimensions and curvature of space-time is revealed. Furthermore, we investigate the entropy radiated and lost by black holes. We find their ratio near 1 in favor of the Bekenstein's conjecture.
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
We extend the recently proposed Kerr/CFT correspondence to examine the dual conformal field theory of four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. For the extremal Kaluza-Klein black hole, the central charge and temperature of the dual conformal field are calculated following the approach of Guica, Hartman, Song and Strominger. Meanwhile, we show that the microscopic entropy given by the Cardy formula agrees with Bekenstein-Hawking entropy of extremal Kaluza-Klein black hole. For the non-extremal case, by studying the near-region wave equation of a neutral massless scalar field, we investigate the hidden conformal symmetry of Kaluza-Klein black hole, and find the left and right temperatures of the dual conformal field theory. Furthermore, we find that the entropy of non-extremal Kaluza-Klein black hole is reproduced by Cardy formula. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
IEEE
Resumo:
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.