22 resultados para AMORPHOUS-CARBON


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a detailed study on the effects of carbon incorporation and substrate temperature on structural, optical, and electrical properties of p-type nanocrystalline amorphous silicon films. A p-nc-SiC: H thin film with optical gap of 1.92 eV and activation energy of 0.06 eV is obtained through optimizing the plasma parameters. By using this p-type window layer, single junction diphasic nc-SiC : H/a-Si : H solar cells have been successfully prepared with a V-oc of 0.94 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel morphology of TPBD crystals consisting of a three-dimensional interlaced network was obtained by casting the self-seeded 0.1% benzene solution onto carbon-boated mica. Both the transmission electron microscopy (TEM) and electron diffraction (ED) analyses showed that the network was composed of well-developed lamellae. It is imagined this interesting morphology is the results of asymmetrical growth of the original TPBD lamellae on the amorphous interface, and that their preferred orientation changed when they encountered each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of CrHCF firm can be understood in term of two structures: Cr1/3Cr(III)Fe(II)(CN), and MCr(III)Fe(II)(CN)(6). Besides,the film exists in amorphous state: the outer layer is porous film, while the inner layer is relatively compact. According to the electrochemical reaction of CrHCF, the lattice can contract and expand with the cations' diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode I interlaminar fracture of a novel amorphous thermoplastic polyimide reinforced with unidirectional carbon fibre has been studied experimentally using double cantilever beam specimens and scanning electron microscopy. Three kinds of composite were ma

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A FeNiSiBV amorphous composite coating was developed by laser cladding of metallic powders on AISI 1020 low carbon steel substrate. The coatings were studied using X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The coating reveals different microstructures along the depth of the coating. The transition zone exhibits good metallurgical bonding between the substrate and the coating. The layer consists of amorphous phase in majority and nanocrystalline phase/crystalline phase in minority. Accompanied with the nanocrystalline phase, the amorphous phase is concentrated in the middle of the coating. The crystalline phase in the coating is identified as Fe2B. A gradient distribution of the microhardness ranges from 1208 HV0.2 to 891 HV0.2 in the coating along the depth. The coating shows higher microhardness and better wear property than the substrate.