42 resultados para ALUMINOPHOSPHATE MOLECULAR-SIEVE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three types of metal-containing molecular sieves with AFI, AEL and CHA structures (Me = Co, Mn, Cr and V) were synthesized hydrothermally and characterized by XRD, XRF, TG, TPR, NH3-TPD and FT-IR. It was revealed that metals were incorporated into the framework of molecular sieves and induced the presence of charge centers. Both cobalt and manganese in the framework of AIPO-5, AlPO-11 and SAPO-34 were not reducible before the structure collapse. The redox behaviours of these catalysts in cyclohexane oxidation at 403 K using O-2 as oxidant were examined. CoAPO-11 exhibited best activity and good selectivities for the monofunctional oxidation products (88.5%). Cyclohexanol was the major product over most catalysts, whereas for Cr-containing molecular sieves, high selectivity of cyclohexanone was observed. Investigation of reaction mechanism based on CoAPO-11 and CrAPO-5 catalysts indicated that the decomposition of cyclohexyl hydroperoxide (CHHP), the intermediate in cyclohexane oxidation, followed the pathway: cyclohexanone <-- CHHP --> cyclohexanol -->cyclohexanone. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hetero atom substituted aluminophosphate molecular sieves Me-VPI-5(Me = Mgt Ti, Sn, Si) were synthesized hydrothermally. Rare earth ions are originally doped into these microporous materials by aqueous solution ion exchange procedures. The phase transitions of the microporous materials are investigated by high-temperature and high-pressure experimental techniques. The influence of the phase transitions on the rare earth ions' spectral structures is discussed, With the increase of temperature, Eu(II)Mg-VPI-5 is converted into Eu(II)Mg-AIPO(4)-8, then into tridymite phase. The pressure has a notable influence on Eu(II) ion's spectral structures. The spectral structures have changed regularly with the increase of pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ti70Zr10Co20 containing an icosahedral quasicrystalline phase has been fabricated, and presents high activity and selectivity in catalyzing the oxidation of cyclohexane with oxygen under solvent-free conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ordered N-methylimidazolium functionalized mesoporous silica (SBA-15) anion exchangers were directly synthesized by co-condensation of tetraethoxysilane with 1-methyl-3(triethoxysilylpropyl)imidazolium chloride. The prepared samples with rod-like morphology showed high surface areas (> 400 m(2) g(-1)), well-ordered pores (> 58 angstrom), and excellent thermal stability up to 387 degrees C. The adsorption behaviors of Cr(VI) from aqueous solution on the anion exchangers were studied using the batch method. The anion exchangers had high adsorption capacity ranging from 50.8 to 90.5 mg g(-1), over a wider pH range (1-8) than amino functionalized mesoporous silica. The adsorption rate was fast, and the maximum adsorption was obtained at pH 4.6. The adsorption data for the anion exchangers were consistent with the Langmuir isotherm equation. Most active sites of the anion exchangers were easily accessible. The mixed solution of 0.1 mol L-1 NH3 center dot H2O and 0.5 mol L-1 NH4Cl was effective desorption solution, and 95% of Cr(VI) could be desorbed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sodium polyacrylate was synthesized with acrylic acid as the monomer, and sodium bisulfate and ammonium persulfate as the initiator, by means of aqueous solution polymerization. The factors influencing the properties of moisture absorption, such as monomer concentration, dosage of initiator, and reaction temperature were systematically investigated. The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material, such as silica gel, and molecular sieve. The best reaction condition and formula are based on the orthogonal experiment design. The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g. The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis. The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency, followed by monomer concentration and reaction temperature, while other factors have less influence.