44 resultados para ACTIN
Resumo:
鲫鱼对低氧具有极强的耐受性。在低氧状态下鲫鱼鳃瓣表面积增加,无氧代谢增强,能量消耗降低。但是人们对鲫鱼产生这些低氧反应的分子机理还缺乏了解。本研究以1%低氧处理24h的鲫鱼囊胚细胞(CAB)作为检测子(Tester),常氧条件下培养的CAB细胞作为驱赶子(Driver),分别提取总RNA,利用SMART cDNA技术合成双链cDNA,经差减杂交和抑制性PCR扩增获得差减PCR产物。然后将差减PCR产物连接到pGEM-T载体上,构建差减cDNA文库。以管家基因β-actin作为指标检测差减效率,发现该文库差
Resumo:
转基因构建体中启动子的选择会直接影响转植基因的活性,近年来有研究表明转基因构建体中终止子的选择会一定程度地影响转植基因的活性。为了更好地筛选转基因构建体和培育快速生长的转"全鱼"生长激素(Growth hormone,GH)基因鱼,文章用鲤鱼β-actin基因终止子和生长激素基因终止子分别构建了转基因构建体,显微注射得到转"全鱼"GH基因鱼P0代养殖群体,比较两种不同终止子构建体的活性。统计分析发现,生长激素基因终止子构建体的养殖群体的体重频率呈正态分布且平均体重显著高于β-actin基因终止子构建体的养
Resumo:
以致病性嗜水气单胞菌(Aeromonas hydrophila)人工感染的中华鳖(Trionyx sinensis)肝、脾、肾组织为材料,应用抑制性差减杂交(SSH)技术,构建了嗜水气单胞菌感染组织的差减cDNA文库。以中华鳖管家基因-βactin作为差减指标检测该文库差减效率达210倍,表明感染细菌后某些差异表达基因得到了相应倍数的富集。将获得的cDNA片段连接到pMD18-T载体并转化大肠杆菌DH5α感受态细胞。PCR阳性检测显示差减片段在150—800bp之间。该差减cDNA文库的构建为快速分离和鉴
Resumo:
使用高保真PCR方法从虹鳟鱼基因组中克隆得到虹鳟鱼组蛋白H3启动子.将虹鳟鱼组蛋白H3启动子插入启动子缺失的增强绿色荧光蛋白(EGFP)表达载体pEGFP-1中,构建成重组载体pRH3EGFP-1.通过显微注射法得到转pRH3EGFP-1稀有(鱼句)鲫.在荧光解剖镜下,可以清楚地观察到EGFP在发育到原肠胚的转pRH3EGFP-1稀有(鱼句)鲫中表达.在稀有(鱼句)鲫幼体鱼苗中也可以清楚地观察到EGFP在多个组织中的泛组织表达.比较CMV启动子、鲤鱼β-actin启动子、虹鳟鱼组蛋白H3启动子的EGFP表
Resumo:
紫外线灭活的草鱼出血病病毒 (GCHV)能诱导鲫囊胚培养细胞 (CAB)产生高滴度的干扰素 ,从而诱导宿主细胞基因表达的改变并处于抗病毒状态。提取灭活病毒诱导未经病毒诱导的CAB细胞mRNA ,利用抑制性差减杂交技术 ,成功构建了鱼类培养细胞抗病毒基因差减cDNA文库。以鲫管家基因α tubulin和 β actin作为差减指标 ,检测差减cDNA文库的差减效率分别高达 2 15和 2 7倍 ,表明经过病毒诱导后的细胞中 ,某些差异表达基因的富集效率也接近 2 15倍。鱼类抗病毒基因差减cDNA文库的建立
Resumo:
采用显微注射法将含有鲤鱼 β actin基因启动子的草鱼生长激素基因“全鱼”基因pCAgcGHc转入异源四倍体鲫鲤 ,然后使其自交得到转基因异源四倍体鲫鲤F1,对 15 0日龄F1体重和体长进行检测 ,可明显看见转基因异源四倍体鲫鲤F1的生长优势 ;取F12 0尾 ,提取尾鳍基因组DNA ,采用合适的引物 ,PCR方法检测转基因异源四倍体鲫鲤F1是否含有外源生长激素基因 ,结果 15 0日龄F1阳性率达到 90 % ,且有些雄性个体可以挤出少量精液 ,而普通 15 0日龄异源四倍体鲫鲤无此现象。文章阐明了
Resumo:
β—actin基因启动子驱动的草鱼生长激素基因cDNA—“全鱼”基因 pCAgcGHc用显微注射方法导入四倍体鱼卵 ,获得了生长快 ,个体硕壮的转基因四倍体鱼。 2 4 0日龄时 ,转基因鱼平均体重为 30 2 7g ,是对照鱼的 3 1倍 ,平均体长是对照的 1 34倍 ,并可从部分转基因雄鱼挤出精液 ,而对照鱼尚无此现象。对 19尾转基因四倍体雄鱼的精液和尾鳍DNA做PCR检测 ,外源基因的阳性率分别为 94 7%和 52 6%。最后 ,展望了转基因四倍体鱼在转基因鱼产业化方面的应用前景
Resumo:
Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.
Resumo:
C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including antiinflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-POP) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 mu M of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-POP as a promising cancer prevention or therapy agent. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The integration pattern and adjacent host sequences of the inserted pMThGH-transgene in the F4 hGH-transgenic common carp were extensively studied. Here we show that each F4 transgenic fish contained about 200 copies of the pMThGH-transgene and the transgenes were integrated into the host genome generally with concatemers in a head-to-tail arrangement at 4-5 insertion sites. By using a method of plasmid rescue, four hundred copies of transgenes from two individuals of F4 transgenic fish, A and B, were recovered and clarified into 6 classes. All classes of recovered transgenes contained either complete or partial pMThGH sequences. The class I, which comprised 83% and 84.5% respectively of the recovered transgene copies from fish A and B, had maintained the original configuration, indicating that most transgenes were faithfully inherited during the four generations of reproduction. The other five classes were different from the original configuration in both molecular weight and restriction map, indicating that a few transgenes had undergone mutation, rearrangement or deletion during integration and germline transmission. In the five types of aberrant transgenes, three flanking sequences of the host genome were analyzed. These sequences were common carp beta-actin gene, common carp DNA sequences homologous to mouse phosphoglycerate kinase-1 and human epidermal keratin 14, respectively.
Resumo:
Rainbow trout historic H3 (RH3) promoter was cloned via high fidelity PCR. The cloned RH3 promoter was inserted into a promoter-lacked vector pEGFP-1, resulting in an expression vector pRH3FGFP-1. The linearized pRH3EGFP-1 was microinjected into fertilized eggs of rare minnows and the sequential embryogenetic processes were monitored under a fluorescent microscope. Strong green fluorescence was ubiquitously observed at as early as the gastrula stage and then in various tissues at the fry stage. The results indicate that RH3 promoter, as a piscine promoter, could serve in producing transgenic Cyprinoid such as rare minnow. Promoter activity of RH3, CMV and common carp beta-actin (CA) were compared in rare minnow by the expression of respective recombinant EGFP vectors. The expression of pCMVEGFP occurred earlier than the following one, pRH3EGFP-1, and then pCAEGFP during the embryogenesis of the transgenics. Their expression activities demonstrated that the CMV promoter is the strongest one, followed by the CA and then the RH3.
Resumo:
The first successful case of transgenic fish was achieved in 1984. It is in a model system that the integration and expression of recombinant human growth hormone (hGH) in host red common carp (Cyprinus carpio, red var.) have been thoroughly studied. Recently, the integration sites have been recovered and characterized. Compared with non-transgenic peers, hGH-transgenic fish are prior in dietary utilization and growth performance. In view of bio-safety and bio-ethics, an "all-fish" construct CAgcGH, grass carp growth hormone fused with common carp P-actin promoter, has been generated and transferred into Yellow River carp (C carpio, local strain in Yellow River) fertilized eggs. Under middle-scale trial, CAgcGH-transgenics show higher growth rate and food conversion efficiency than the controls, which is consistent to laboratory findings. To avoid the potential impact of transgenic fish on the environment, a sterile strain of transgenic triploid fish has been successfully produced. The "all-fish" transgenic common carp is also approved safe enough as daily food, according to a test based on the pathological principles of new medicines issued by the Ministry of Health of China. The "all-fish" transgenic common carp with growth enhancement is now ready for market, but looking for governmental authorization. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.
Resumo:
Haemorrhage can be an epidemic and fatal condition in grass carp. It is known now that the Grass Carp Haemorrhage Virus (GCHV) triggers haemorrhage. Human lactoferrin (hLF) plays an important role in the non-specific immune system, making some organisms more resistant to some viruses. Sperm of grass carp was mixed with linearized pCAhLFc, which is a DNA construct containing an hLF cDNA and the promoter of common carp beta-actin gene, and then electroporated. Then, mature eggs were fertilized in vitro with the treated sperm cells. The fry were sampled and analyzed by polymerase chain reaction (PCR). Results indicated that the foreign gene had been transferred successfully into the cells of some fry. Under optimal electroporation conditions, the efficiency of gene transfer was as high as 46.8%. About 35.7% of treated 5-month-old grass carp contained foreign genes. Most transgenic fry demonstrated significant delays in onset of symptoms of haemerrhage after injection of GCHV, suggesting a significant positive relationship between hLF cDNA and levels of disease resistance (P < 0.01). Results suggest that transgenic grass carp could be bred for increased resistance to haemorrhage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
To gain information on the integration pattern of pMThGH-transgene, 50 transgenes were recovered from F-4 generation of pMThGH transgenic common carp (Cyprinus carpio L,) and 33 recovered genes were analyzed. The restriction maps of these recovered genes were constructed by digestion with five kinds of enzymes. These transgenes can be classified into 4 types according to their restriction maps. Only one type of transgenes maintains its original molecular form, whereas the other three types are very different from the original one and vary each other on both molecular weight and restriction maps. This implies that the sequences of most transgenes have been deleted and/or rearranged during integration and inheritance. The results of PCR amplification and Southern blot hybridization indicate that MThGH in Type I transgene keeps intact but most of its sequence has been deleted in other three types. All these results suggest that transgenes in F-4 generation of transgenic carp are highly polymorphic. Two DNA fragments concerning integration site of transgenes were cloned from recovered transgenes, and found to be homologous to the 5'UTR of beta -actin gene of common carp and mouse mRNA for receptor tyrosine kinase (RTK), respectively.
Resumo:
Fishes, the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics. Nuclear transplantation in fish has been thoroughly studied in China since 1960s. Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults. Most importantly, nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish. This was the first case of cloned fish with somatic cells. Based on the technique of microinjection, recombinant MThGH gene has been transferred into fish eggs and the first batch of transgenic fish were produced in 1984. The behavior of foreign gene was characterized and the onset of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis. This eventually led to the transgenic mosaicism. The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults. The transgenic common carp were more efficient in utilizing dietary protein than the controls. An "all-fish" gene construct CAgcGH has been made by splicing the common carp beta-actin gene (CA) promoter onto the grass carp growth hormone gene (gcGH) coding sequence. The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait. Combination of techniques of fish cell culture, gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21(st) century.