20 resultados para 6:00 PM
Resumo:
在中国科学院海北高寒草甸生态系统定位站,研究放牧强度对土壤CO2释放速率的影响及其与环境条件的关系。结果表明,CO2释放速率具有明显的日变化规律,日最大值在12∶00~14∶00h出现,最低值出现于凌晨6∶00~8∶00h。轻牧和重牧区日释放速率分别为7.774±5.577 g·m-2·d -1和6.977±4.947 g·m-2·d -1。CO2释放速率具有明显的季节变化,最大值均出现在7月,而冬季则最低。CO2释放速率的日变化主要受气温和地表温度的制约,与气温和地表温度呈极显著的正相关(P<0.01)。CO2释放速率的季节动态与气温和地温(0~30cm)呈极显著的正相关(P<0.01)。放牧使CO2释放速率降低。
Resumo:
The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.
Resumo:
在信息系统工程开发中引入监理机制已经成为业界的共识。监理组织以独立“第三方”身份加入项目,通过“控制、管理、协调”的手段,达到提高项目质量的目的。分析了信息系统工程监理自动化支持的研究现状,提出了面向信息系统工程监理的软件工具IT-PM。工具以信息系统工程监理的过程模型为基础,支持监理工作的流程和信息管理自动化。
Resumo:
通过重离子引起的融合蒸发反应 92 Mo (40 Ca ,p2n)合成了稀土区未知核素 12 9Pm ,并且配合氦喷嘴快速带传输系统利用X γ符合方法对它进行了首次鉴别 .实验观测到了经 12 9Pm的 (EC +β+ )衰变产生的对应于子核 12 9Nd中 5 2 -→ 1 2 -跃迁的一条 99keVγ线 .根据这条 99keVγ线的时间衰变曲线 ,提取出 12 9Pm的半衰期为 (2 .4± 0 .6 )s .
Resumo:
经过铝粉加热活化的AlCl_3与SmCl_3在苯中反应,得到了Sm(η~6—C_6H_6)(AlCl_4)_3·C_6H_6单晶.其晶体属于三斜晶系,P1空间群,晶胞参数a=9.456(2)(?),b=9.765(3)(?),c=16.776(4)(?),α=96.00(2)°,β=93.76(2)°,γ=111.66(2)°,V=1422.55(?)~3,Z=2.晶体结构是采用Patterson和Fourier合成法解出的,所有非氢原子的坐标及各向异性热振动参数经块矩阵最小二乘法修正,最后偏离因子R=0.031,R_ω=0.035.分子结构中,中心离子Sm(Ⅲ)与六个Cl原子及一个苯环上的六个C原子成键.Sm-C键平均距离2.92(?),Sm-Cl平均距离2.83(?).与希土相连的六个Cl原子,其中之五构成平面五边形,整个分子呈大致的五角双锥形.