308 resultados para 3-cloropropyl silica gel
Resumo:
Ternary complexes of rare earth Eu(dbm)(3).phen and Tb(acac)(3).phen (dbm = dibenzoylmethanide, acac = acetylacetone and phen = 1,10-phenanthroline) were introduced into silica gel by the sol-gel method. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than in the pure rare earth complexes. The lifetimes of rare earth ions in silica gel (Eu3+ and Tb3+) doped with Eu(dbm)(3).phen and Tb(acac)(3).phen were longer than those in purl Eu(dbm)(3).phen and Tb(acac)(3).phen. A very small amount of rare earth complexes doped in a silica gel matrix can retain excellent luminescence properties. (C) 1997 Elsevier Science S.A.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.
Near-infrared luminescence from sol-gel materials doped with holmium(III) and thulium(III) complexes
Resumo:
A series of ternary Ln(tta)(3)L complexes (Ln = Ho, Tm; Htta = 2-thenoyltrifluoroacetone; L = 1,10-phenanthroline, 2,2'-bipyridine, or triphenyl phosphate oxide) and their corresponding sol-gel hybrid materials formed via the in situ synthesis process (designated as Ln-T-L gel) were reported. The complexes and the gels were studied in detail, which suggest the complexes have been successfully synthesized in the corresponding gels.
Resumo:
Two new silica-based organic-inorganic hybrid materials (B104SGs and O104SGs) doped with a binary mixture of imidazolium and phosphonium ionic liquids have been synthesized and used as sorbents in batch system for rare earths (RE) separation. Imidazolium ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mim(+)PF(6)(-)) or 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)(-)) acted as porogens to prepare porous materials and additives to stabilize extractant within silica gel.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.
Resumo:
An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.
Resumo:
A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3). phen: where HTTA = 1-(2-thenoyl)-3,3,3-trifluoracetone and phen = 1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate or ethyl methacrylate, the inorganic/polymer hybrid materials containing Eu(TTA)(3). phen have also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)3 phen. (C) 2000 Kluwer Academic Publishers.
Resumo:
In-situ synthesis of terbium complex with salicylic acid (Sal) in silica matrix was made by a two-step sol-gel process. The terbium complex with salicylic acid was formed in sol-gel derived silica gel, and confirmed by the luminescence excitation spectra and infrared(IR) spectra. As compared to the pure terbium complex powder, the silica gel containing terbium complex exhibits its characteristic emission and presents a longer fluorescence lifetime than that for the pure complex. The luminescence properties of the complex containing;silica gel were investigated and compared with that of both terbium doped the silica gel and thp pure complex powder. The reasons leading to the above results were also discussed.
Resumo:
In-situ synthesis of europium and terbium complexes with 1,10-phenanthroline (phen) in silica matrix by a two-step sol-gel process has been proposed. The formation of europium and terbium complexes with phen in sol-gel derived silica gel were confirmed by the luminescence excitation spectra. The silica gels that contain in-situ synthesized europium and terbium complex exhibit the characteristic emission bands of the rare earth ions. Furthermore. the rare earth ions present longer fluorescence lifetimes than the comparable pure complex powder and the complexes dissolved in ethanol solutions. The luminescence properties of the silica gels codoped with europium (or terbium) and phen were also investigated with respect to the gels doped with europium (or terbium). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Binary and ternary complexes of europium and terbium with conjugated carboxylic acid (nicotinic acid and 3,4-furandicarboxylic acid) and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than those in pure rare earth complexes. The lifetimes of rare earth ions (EU3+ and Tb3+) in silica gel doped with rare earth complexes became longer than those in pure rare earth complexes. (C) 1998 Elsevier Science S.A.
Resumo:
Ternary complexes of terbium with ortho (and pam) aminobenzoic acid and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the solid-state samples was studied during the sol-gel aging process by means of emission. excitation spectra, lifetimes and quantum efficiencies.
Resumo:
A novel method of synthesizing protein chiral stationary phase (protein-CSP) is proposed with 2,4,6-trichloro-1,3,5-triazine as the activator. The bovine serum albumin (BSA) based chiral columns (150x4.6 mm I.D.) were prepared successfully within 8 h. With tryptophan as the probe solute, it was observed that the BSA immobilized by this method had a better ability to distinguish enantiomers than that activated by glutaric dialdehyde. This may be due to the well-maintained BSA conformation and the larger amount of BSA immobilized on the silica gel. The BSA-CSP prepared by this method was relatively stable under experimental conditions, and the resolution of 13 chiral compounds was achieved. The coupling reaction in this method is mild, reliable and reproducible; it is also suitable for the immobilization of various biopolymers in the preparation of bioreactor, biosensor and affinity chromatography columns. (C) 2000 Elsevier Science B.V. All rights reserved.