33 resultados para 230119 Systems Theory and Control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/ g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10(-5) rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourth-order spatial interference of entangled photon pairs generated in the process of spontaneous parametric down-conversion pumped by a femtosecond pulse laser has been performed for the first time. In theory, it takes into account the transverse correlation between the two photons and is used to calculate the dependence of the visibility of the interference pattern obtained in Young's double-slit experiment. In this experiment, a short focal length tens and two narrow band interference filters were adopted to eliminate the effects of the broadband pump laser and improve the visibility of the interference pattern under the condition of nearly collinear light and degenerate phase matching.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new theoretical model of Pattern Recognition principles was proposed, which is based on "matter cognition" instead of "matter classification" in traditional statistical Pattern Recognition. This new model is closer to the function of human being, rather than traditional statistical Pattern Recognition using "optimal separating" as its main principle. So the new model of Pattern Recognition is called the Biomimetic Pattern Recognition (BPR)(1). Its mathematical basis is placed on topological analysis of the sample set in the high dimensional feature space. Therefore, it is also called the Topological Pattern Recognition (TPR). The fundamental idea of this model is based on the fact of the continuity in the feature space of any one of the certain kinds of samples. We experimented with the Biomimetic Pattern Recognition (BPR) by using artificial neural networks, which act through covering the high dimensional geometrical distribution of the sample set in the feature space. Onmidirectionally cognitive tests were done on various kinds of animal and vehicle models of rather similar shapes. For the total 8800 tests, the correct recognition rate is 99.87%. The rejection rate is 0.13% and on the condition of zero error rates, the correct rate of BPR was much better than that of RBF-SVM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloch modes can be excited in planar array due to its periodic lateral refractive index. The power coupled into each eigenmode of the array waveguides is calculated through the overlap integrals of the input field with the eigenmode fields of the coupled infinite array waveguides projected onto the x-axis. Low losses can be obtained if the transition from the array to the free propagation region is adiabatic. Due to the finite resolution of lithographic process the gap between the waveguides will stop abruptly, however, when the waveguides come into too close together. Calculation results show that losses will occur at this discontinuity, which are dependent on the ratio of the gap between the waveguides and grating pitch and on the confinement of field in the array waveguides. Tapered waveguides and low index contrast between the core and cladding layers can lower the transmitted losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

基于联络新参数化方案研究了多分量对偶超导模型。给出了多分量Ginzburg-Landau模型中的自对偶解,并研究了磁通量子数趋于无穷大时的墙涡旋解,以及与口袋模型之间的联系。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibronic excitations of the tri-atomic molecule OClO (A(2)A(2)(nu(1), nu(2), nu(3)) <-- (XB1)-B-2 (0, 0, 0)) with weak and strong ultra-short laser fields are studied within full quantum wavepacket dynamics in hyperspherical coordinates. Different dynamics is observed following excitation with laser pulses of different intensities. With a strong laser pulse, many vibrational states are excited and a spatially more localised wavepacket arises. The numerical results show that the population of different vibrational states of the wavepacket on the excited potential energy surface is altered by the intensity of the laser pulse. The numerical results also suggest a related effect on the phase of the wavepacket. These interesting phenomena can be understood by an analysis of the corresponding results for two model diatomic molecules. The possible physical mechanisms of control of chemical processes using strong laser fields are discussed. (C) 2004 Elsevier B.V. All rights reserved.