29 resultados para 1995_12041547 CTD-27 5400703
Resumo:
完成了19F+27Al深部非弹性碰撞产物的角分布测量.初步分析了反应产物B,C,N,O,F,Ne,Na,Mg和Al的实验室系角分布,展现出深部非弹性反应机制的特点,显示了反应系统随时间的演化过程.
Resumo:
测量了2 7Al+ 2 7Al耗散反应产物的激发函数 ,束流2 7Al8+的入射能量从1 1 4MeV到 1 2 7MeV变化 ,能量步长为 2 0 0keV .探测角度覆盖了实验室系1 0°— 57°的连续区域 .用不同的理论模型分析了耗散产物的能量自关联函数 .结果表明 ,反应所形成的中间双核系统的阻尼相干转动造成了激发函数中不可平滑的涨落结构 ,相干转动的阻尼来自量子混沌运动
Resumo:
在2 7Al+ 2 7Al(Elab≈ 1 2 0MeV)耗散反应激发函数涨落的实验研究中 ,首次在较大的角度范围内获得截面涨落的角度关联系数和角度关联函数 .实验结果表明 ,角度关联函数的形状呈现明显的非对称性 ,角度相干宽度至少为 4 0°;截面涨落在前后角区表现出明显不同的角度相关性 .
Resumo:
测量了 25MeV/u40 Ar+115 In,58 Ni,27 A1反应前中角区出射碎片的角分布和 元素 Z分布.用改进的量子分子动力学(MQMD)模型研究了碎片的角分布和 Z 分布.理论计算值和实验值整体上符合得很好,但在前角区,MQMD模型低估 了碎片的产额,在中角区对于Z接近弹核的碎片,理论计算值比实验值偏高.碎 片产物的角分布和Z分布还与统计蒸发模型GEMINI进行了比较,结果表明,在 前角区平衡蒸发成份所占的比例很小,中角区所占的比例有所增加,但仍然是较 小的比例.同时发现平衡蒸发成份随着出射碎片核电荷数Z的减小而逐渐减 少.
Resumo:
Excitation functions have been measured for different projectile-like fragments produced in Al-27(F-19,x)y reactions at incident energies from 110.25 to 118.75 MeV in 250 keV steps. Strong cross section fluctuations of the excitation functions are observed. The cross- correlation coefficients of the excitation functions for different atomic number Z and for different scattering angle theta(cm) have been deduced. These coefficients are much larger than the statistical theoretical calculated ones. This indicates that there are strong correlations between different exit channels in the dissipative heavy ion Collision of Al-27(F-19,x)y.
Resumo:
Excitation functions are measured for different charge products of the F-19+(27) Al reaction in the laboratory energy range 110.25-118.75MeV in steps of 250keV at theta(lab) = 57 degrees, 31 degrees and -29 degrees. The coherence rotation angular velocities of the intermediate dinuclear systems formed in the reaction are extracted from the cross section energy autocorrelation functions. Compared the angular velocity extracted from the experimental data with the ones deduced from the sticking limit, it is indicated that a larger deformation of the intermediate dinuclear system exists.
Resumo:
Excitation functions of the reaction products B, C, N, O, F and Ne emitted from the dissipative reaction of (19) F+(27) Al have been measured at incident energies from 110.25MeV to 118.75MeV in steps of 250keV. The moments of inertia of the intermediate dinuclear system formed in the reaction are extracted from the energy autocorrelation functions of the products. Comparing the moment of inertia extracted from the experimental data with the calculated one by using the sticking limit, it indicates that the formed dinuclear system has a large deformation in the reaction process.
Resumo:
The differential cross sections of the dissipative products B, Q N, O, F, Ne, Na and Mg induced from the reactions of F-19+Al-27 at two incident energies have been measured at the HI-13 tandem accelerator, Beijing. In the case of a fixed beam incident energy 114MeV or 118.75MeV respectively, identical reaction system and the same detection system, 20 target points in steps of 2mm on(.)a 10mmx50mm rectangular Al foil have been bombarded. The experimental results indicate that the probability distribution of the cross sections is much wider than a standard Gaussian distribution. This non-reproducibility of the cross sections can't be interpreted by the statistical property of a finite count rate.
Resumo:
Twenty-seven Porphyra lines, including lines widely used in China, wild lines and lines introduced to China from abroad in recent years, were screened by random amplified polymorphic DNA (RAPD) technique with 120 operon primers. From the generated RAPD products, 11 bands that showed stable and repeatable RAPD patterns amplified by OPC-04, OPJ-18 and OPX-06, respectively were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with two digitals, 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band, respectively. Based on the above results, computerized DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique fingerprinting pattern and can be easily distinguished from others. Software named PGI (Porphyra germplasm identification) was designed for identification of the 27 Porphyra lines. In addition, seven specific RAPD markers from seven Porphyra lines were identified and two of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification and resource protection of the Porphyra lines.
Resumo:
Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level > 95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69A degrees C, 0.52A degrees C and 1.18A degrees C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17A degrees C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007A degrees C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all < 20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline.
Resumo:
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct.-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12A degrees N near the sea surface. This bifurcation shifts northward with depth, reaching about 20A degrees N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21A degrees N, intensifies southward, with its upper boundary surfacing around 12A degrees N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10A degrees N and 12A degrees N at 130A degrees E. In the upper 2 000 dbar, the total westward transport across 130A degrees E between 7.5A degrees N and 18A degrees N reaches 65.4 Sv (1 Sv = 10(-6) m(3)s(-1)), the northward transport across 18A degrees N from Luzon coast to 130A degrees E is up to 35.0 Sv, and the southward transport across 7.5A degrees N from Mindanao coast to 130A degrees E is 27.9 Sv.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
The Luzon Strait is the only deep channel that connects the South China Sea (SCS) with the Pacific. The transport through the Luzon Strait is an important process influencing the circulation, heat and water budgets of the SCS. Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial. On the basis of hydrographic measurements from CTD along 120 degrees E in the Luzon Strait during the period from September 18 to 20 in 2006, the characteristics of temperature, salinity and density distributions are analyzed. The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation. The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer, and the flow is relatively weak and eastward in the deeper layer. The net volume transport of the Luzon Strait during the observation period is westward, amounts to about 3.25 Sv. This result is consistent with historical observations.
Resumo:
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。