127 resultados para 1995_03240022 TM-34 4501307
Resumo:
稀土离子掺杂的氧氟玻璃是一种新型上转换发光材料。制备了Tm^3/Yb^3+单掺、共掺的摩尔分数为n(SiO2)-0.30,n(PbF2)-0.50,n=(Al2O3)=0.15,n(AlF3)=(0.049-x),n(TmF3)=y,n(YbF3)=x(x=0,0.001,0.010,0.015,0.020,y=0,0.001)系统氧氟玻璃,研究了其上转换发光特性、分析了其上转换发光机理。研究发现,在970nm抽运光源激发下,Tm^3+单掺时没有可见光上转换发射;而加入Yb^3+后产生了强的蓝光(452n
Resumo:
研究了卤化铅调整Tm^3+/Yb^3+共掺碲酸盐玻璃的热稳定性能、Raman光谱和上转换发光光谱,分析了Tm^3+/Yb^3+共掺氧卤碲酸盐玻璃的上转换发光机理.结果发现:混合卤化铅调整Tm^3+/Yb^3+共掺碲酸盐玻璃具有好的热稳定性能、低的声子能量、强的上转换蓝光.这表明混合卤化铅调整Tm^3+/Yb^3+共掺碲酸盐玻璃是一种上转换蓝光激光器的潜在基质材料.
Resumo:
制备了一种新的Er^3+/Tm^3+/Yb^3+共掺氧卤碲酸盐玻璃。研究了基质玻璃的热稳定性能、Raman光谱和上转换发光。发现:氧卤碲酸盐玻璃具有好的热稳定性能和低的声子能量,在980nmLD激发下,可同时观察到明显的蓝色(476nm)、绿色(530nm和545nm)和红色(656nm)上转换发光。上转换蓝光(476nm)是由于Tm^3+离子1^G4→3^3H6跃迁,上转换的绿光(530nm和545nm)是由于Er^3+离子2^H11/2→4^I15/2和4^S3/2→4^I15/2跃迁,上转换红光(6
Resumo:
研究了Yb2O3浓度对Tm^3+/Yb^3+共掺氧卤碲酸盐玻璃的上转换发光的影响,分析了上转换发光机理。结果发现,通过980nm的激光二极管激发,在室温下同时观察到强烈的蓝光(475nm)和微弱的红光(649nm),分别是由于Tm^3+离子^1G4→^3H6和^1G4→^3F4跃迁产生的;上转换机理分析表明,上转换蓝光和红光都是由于双光子吸收过程。随Yb2O3浓度增加,Yb^3+离子寿命降低,Yb^3+到Tm^3+的能量转移效率增加,上转换蓝光和红光强度先增加,在Yb2O3摩尔比为3时达到最大,然后降低。
Resumo:
An efficient near-infrared (NIR) quantum cutting (QC) in GdAl3(BO3)(4):RE3+,Yb3+ (RE=Pr, Tb, and Tm) phosphors has been demonstrated, which involves the conversion of the visible photon into the NIR emission with an optimal quantum efficiency approaching 200%, by exploring the cooperative downconversion mechanism from RE3+ (RE=Pr, Tb, and Tm) excitons to the two activator ions, Yb3+. The development of NIR QC phosphors could open up a new approach in achieving high efficiency silicon-based solar cells by means of downconversion in the visible part of the solar spectrum to similar to 1000 nm photons with a twofold increase in the photon number. (c) 2007 American Institute of Physics.
Resumo:
稀土掺杂氧氟玻璃是一种优良的上转换发光材料,制备了组分为35SiO2—15AlO1.5-(45-x)PbF2-xCdF2—0.1TmF3—1.5YbF3(x=0,10,20,30)的氧氟硅酸盐玻璃,系统研究了CdF2含量对其热学性能和光学性能的影响。研究表明用CdF2部分替代PbF,可以提高玻璃的热稳定性、使紫外吸收截至边向短波方向移动;随着CdF2含量的增加,开始Tm^3+蓝光和红光上转换发光增强缓慢,而后迅速增强.而近红外上转换发射先显著增强后增强放缓;由于蓝光和近红外发光强度远大于红光发光强度,所以
Resumo:
The thermal stability, 2 μm fluorescence properties and energy transfer mechanism in Ho3+ doped fluorophosphate glass sensitized by Yb3+ and Tm3+ were investigated. The characteristic temperatures, absorption spectrum and fluorescence spectrum of the glass sample were measured. ΔT calculated from the characteristic temperatures shows that the thermal stability of fluorophosphate glass is better than fluoride glass. According to the absorption spectrum, several spectroscopic parameters of the glass sample, such as Judd-Ofelt parameters and spontaneous transition probability were calculated and compared with other glass hosts. The largest spontaneous transition probability for Ho3+:5 I
Resumo:
Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The near-IR emission spectra of Er3+-Tm3+ codoped 70GeS(2)-20In(2)S(3)-10CsI chalcohalide glasses were studied with an 808 nm laser as an excitation source. A broad emission extending from 1.35 to 1.7 mu m with a FWHM of similar to 160 nm was recorded in a 0.1 mol.% Er2S3, 0.5 mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460 nm and Er3+ at 1540 nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions. (C) 2008 Optical Society of America
Resumo:
We report on cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses (LBG), which are capable of splitting a visible photon absorbed by Tm3+ or Pr3+ ions into two near-infrared photons. The results indicate that Pr3+-Yb3+ is a more efficient ion couple than Tm3+-Yb3+ in terms of cooperative downconversion. We have obtained a highest quantum yield of 165% and 138% for Pr3+-Yb3+ and Tm3+-Yb3+ codoped LBG glasses under 468 nm excitation, respectively. However, ultraviolet light excitation to the charge transfer band of Yb3+ does not result in quantum splitting as rapid relaxation from the charge transfer band to 4f(13) levels of Yb3+ dominates. (C) 2008 Optical Society of America