22 resultados para 09041210 CTD-129
Resumo:
Using the slow highly charged ions Xe-129(q+) (q = 25, 26, 27; initial kinetic T-0 <= 4.65 keV/a.u.) to impact Au surface, the Au atomic M alpha characteristic X-ray spectrum is induced. The result shows that as long as the charge state of projectile is high enough, the heavy atomic characteristic X-ray can be effectively excited even though the incident beam is very weak (nA magnitude), and the X-ray yield per ion is in the order of 10(-8) and increases with the kinetic energy and potential energy of projectile. By measuring the Au M alpha-X-ray spectra, Au atomic N-level lifetime is estimated at about 1.33x10(-18) s based on Heisenberg uncertainty relation.
Resumo:
Nd-129 was produced by irradiation of an enriched target of Ru-96 with a Ar-36 beam and studied by using a helium-jet fast tape transport system in combination with X-gamma and gamma-gamma coincidence measurements. A 2.6s isomer of Nd-129 was observed for the first time and tentatively proposed to be the configuration of 1/2[411].
Resumo:
We studied the characteristic X-ray spectra produced by the interaction of highly charged ions of X-129(q+) (q =25, 26, 27) with surface of metallic Mo. The experimental result shows that highly charged ions can excite the characteristic X-ray spectra of L-shell of Mo when the beam' s intensity is not more than 120 nA. The X-ray yield of single ion reaches a quantitative level of 10(-8) and increases with the increment of the ion' s kinetic energy and ionic charge (potential energy). By measuring the X-ray spectra of Mo-L alpha(1) the M-level lifetime of Mo atom is estimated by using Heisenberg uncertainty relation.
Resumo:
研究了高电荷态离子129Xeq+(q=25,26,27)入射金属Mo表面产生的特征X射线谱.实验结果表明,在束流强度小于120nA条件下,高电荷态离子129Xeq+可以激发Mo的L壳层特征X射线谱.单离子X射线相对产额可达10-8量级,特征X射线的相对产额随入射离子的动能和电荷态(势能)的增加而增加.通过Mo原子的Lα1特征X射线谱,利用Heisenberg不确定关系对Mo原子的第M能级寿命进行了估算.
Resumo:
The transfer of H+, Li+, Na+, Zn2+, Mg2+ and Cu2+ facilitated by ionophore ETH 129 (N, N, N', N'-tetracyolohexyl-3-oxapentanediamide) across water/nitrobenzene interface has been studied by the cyclic voltammetry. The mechanism of the transfer process has been discussed. The diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.