18 resultados para :replantofC.lanceolata


Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to two times investigation on Scarabaeoidea of Huitong secondary Cunninghamia lanceolata forest in early spring,summer, the number of species Scarabaeoidea in early spring,and summer is 23 and 24,respectively; the Shannon diversity index is 2.067 and 2.417, respectivety; the Shannon evenness is 0.659 and 0.761.In early spring, the dominant species are Malatera horosericea,Melolontha frater and Granida albosparsa.In summer, The dominant species are Anomala vividana, Anomala alabopilosa and Anomala lucens.The species abundance distribution of Scarabaeoidea in two different seasons is fitted in to logarithmic series distribution. A small number of species often become dominant in different seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

杉木 (Cunninghamia lanceolata)与主要阔叶造林树种叶凋落物混合分解实验是用网袋法进行的。目的是检验“杉木叶凋落物与阔叶树叶凋落物混合分解时 ,杉木叶凋落物的分解速率和养分释放都可得到加强”这样一个假设。结果发现 ,杉木与火力楠 (Michelia macclurei var. sublanea)、桤木 (Alnus cremastogyne)叶凋落物混合分解时分解速率有较强的促进作用 ,而与红栲 (Castanopsishystrix)、樟树 (Cinnamomum camphora)、刺楸 (K alopanax pictus)、木荷 (Schima superba)叶凋落物分解时不存在相互作用。至于养分的释放 ,除与木荷叶凋落物混合分解时没有发现相互作用外 ,而与其它阔叶树种叶凋落物混合分解时或强或弱表现出促进作用 ,而且促进作用的强弱与阔叶树叶凋落物初始 N含量有一定的正相关关系。如果仅从阔叶树叶凋落物与杉木叶凋落物混合分解的作用形式和强弱来考虑选择杉木的伴生树种时 ,首选树种是桤木 ,其次是刺楸 ,再其次是火力楠、红栲 ,最后才是樟树和木荷。当然只依据此单一条件来选择混交树种还不科学。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.