64 resultados para : fibre reinforced composite


Relevância:

80.00% 80.00%

Publicador:

Resumo:

利用分离式Hopkinson压杆和MTS通用材料试验机研究了SiC_p/6151Al颗粒增强复合材料在不同应变率下的变形行为和增强颗粒的尺寸对复合材料微结构及变形行为的影响。结果表明,对于在不同应变率下的SiC_p/6151Al复合材料,增强颗粒尺寸大小的流动应力高于增强颗粒尺寸的流动应力。根据位错强化理论中的Hall-Petch关系对这个结果进行了解释。首次在实验上观测到增强颗粒对复合材料微损伤-微带形成的影响,并根据微带(microband)形成的双位错墙理论(double dislocation walls), 分析了增强颗粒对复合材料微带损伤及力学性能影响的微结构效应。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文主要研究线弹性纤维增强复合材料在冲击载荷作用下裂纹的动态起裂行为。全文共分六章。第一章对裂纹动态起始问题的研究方法和纤维增强复合材料中裂纹动态起始问题的国内外研究现状进行了综述,确定了本论文的主要研究内容和研究方法。第二章用有限元方法研究有限尺度含裂纹纤维增强复合材料板在阶跃冲击载荷作用下的动力响应,分析了裂尖附近的应力分布、应力波在板中的传播和应力强度因子时间历程。第三章根据第二章的计算结果用线弹性简单梁理论和拉格朗日运动方程研究了各向同性材料和纤维增强复合材料中裂纹在阶跃冲击载荷作用下的动力响应和起裂行为,得到了应力强度因子初始上升阶段的数学表达式和裂纹起裂的临界载荷面。第四章提出了用于单向和层合纤维增强复合材料裂纹静态和动态起始预测的拟应力强度因子比准则。该准则将裂纹的起裂和起裂方向的预测合二为一,只需测定材料的四个基本动态断裂韧性,就可据此准则对任意角度单向板中裂纹的起裂和起裂方向进行预测,用于层合板时,还可以对铺层裂纹的起裂顺序进行预测。第五章用SHTB(分离式Hopkinson拉杆)技术对纤维增强复合材料裂纹动态起始问题进行了实验研究。测量了碳纤维增强环氧树脂复合材料板裂纹起裂的I型动态断裂韧性,并首次验证了拟应力强度因子比准则在裂纹动态起裂预测中的合理性。第六章对全文进行了总结,归纳了本论文的主要结论,并展望了今后的研究工作。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effective elastic properties of piezoelectric composites containing an infinitely long, radially polarized cylinder embedded in an isotropic non-piezoelectric matrix are theoretically investigated under an external strain field. Analytical solutions of elastic displacement and electric potentials are exactly derived, and the effective elastic responses are formulated in the dilute limit. Meanwhile, a vanishing piezoelectric response mechanism is revealed in the piezoelectric composite containing radially polarized cylinders. Furthermore, it is shown that the effective elastic properties can be enhanced (or reduced) due to the increase of the piezoelectric (or dielectric) constants of the cylinders. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon-nanotube sCNTd-reinforced hydroxyapatite composite coatings have been fabricated by laser surface alloying. Microstructural observation using high-resolution transmission electron microscopy showed that a large amount of CNTs remained with their or

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of thermal exposure on the tensile properties of aluminium borate whisker reinforced 6061 aluminium alloy composite was studied. The interfacial reaction was investigated by TEM and the mechanical properties were studied using tensile tests. The results indicated that the interfacial reaction had an influence on the mechanical properties of the composite, so that the maxima of Young’s modulus and ultimate tensile strength of the composite after exposure at 500?C for 10 h were obtained for the optimum degree of interfacial reaction. The yield strength,however, was not only affected by the interfacial state but also by many other factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (CNTs) have been successfully introduced into hydroxyapatite (HA) coatings using laser surface alloying. It is evident from transmission electron microscopy (TEM) observations that the CNTs present in the matrix still keep their multi-walled cylinder graphic structure, although they undergo the laser irradiation. Scratching test results indicated that the as-alloyed HA composite coatings exhibit improved wear resistance and lower friction coefficient with increasing the amount of CNTs in the precursor material powders. These composites have potential applications in the field of coating materials for metal implants under high-load-bearing conditions. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Theoretically, we analyse the dispersion compensation characteristics of the chirped fibre grating (CFG) in an optical fibre cable television (CATV) system and obtain the analytic expression of the composite second-order (CSO) distortion using the time-domain form of the field envelope wave equation. The obtained result is in good agreement with the numerical simulation result. Experimentally, we verify the result by making use of the tunable characteristics of CFG to change the dispersion compensation amount and obtain an optimal CSO performance in a 125km fibre transmission link. Both the theoretical and experimental results show that the CSO performance can be improved by properly choosing the dispersion compensation amount for a certain fibre transmission link.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.